
DEPARTMENT OF HUMANITIES AND SCIENCES 

                                                          

B.Tech I Year II Semester  

DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS 

Subject Code: 23HBS9904 

Regulation: HM23 

 

ANNAMACHARYA INSTITUTE OF TECHNOLOGY AND SCIENCES 

(Autonomous)  

(Affiliated to J.N.T.U.A, Anantapur, Approved by A.I.C.T.E, New Delhi) 

Utukur (P), C.K.Dinne (V&M), Kadapa-516003 

Accredited by NAAC with ‘A’ Grade, Bangalore.  



L T P C 

3 0 0 3 
  

            DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS 

(Common to All Branches of Engineering) 

  
Course Objectives: 

  

 To enlighten the learners in the concept of differential equations and 

multivariablecalculus. 

 To furnish the learners with basic concepts and techniques at plus two level 

to lead theminto advanced level by handling various real-world 

applications. 
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CO1: Solve the differential equations related to various engineering fields. 

CO2: Identify solution methods for partial differential  equations that model physical 

processes. 

CO3: Interpret the physical meaning of different operators such as gradient, curl and 

divergence. 

CO4: Estimate the work done against a field, circulation and flux using vector calculus. 
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UNIT III Partial Differential Equations 
  

Introduction and formation of Partial Differential Equations by elimination of arbitrary 

constants and arbitrary functions, solutions of first order linear equations using Lagrange’s 

method. Homogeneous Linear Partial differential equations with constant coefficients. 

  

UNIT IV  Vector differentiation 
  

Scalar and vector point functions, vector operator Del, Del applies to scalar point 
  

  

  



functions- Gradient, Directional derivative, del applied to vector point functions- 

Divergence and Curl, vector identities. 

UNIT V Vector integration 
  

Line integral-circulation-work done, surface integral-flux, Green’s theorem in the 

plane (without proof), Stoke’s theorem (without proof), volume integral, 

Divergence theorem (without proof) and applications of these theorems. 

  

Textbooks: 

  
1. Higher Engineering Mathematics, B. S. Grewal, Khanna Publishers, 

2017, 44th Edition 

2. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & 

Sons, 2018, 10thEdition. 

  

Reference Books: 

  
1. Thomas Calculus, George B. Thomas, Maurice D. Weir and Joel Hass, 

Pearson Publishers, 2018, 14th Edition. 

2. Advanced Engineering Mathematics, Dennis G. Zill and Warren S. 

Wright, Jones andBartlett, 2018. 

3. Advanced Modern Engineering Mathematics, Glyn James, Pearson 

publishers, 2018,5th Edition. 

4. Advanced Engineering Mathematics, R. K. Jain and S. R. K. 

Iyengar, Alpha ScienceInternational Ltd., 2021 5th Edition (9th 

reprint). 
5. Higher Engineering Mathematics, B. V. Ramana, , McGraw Hill Education, 2017 

 



Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa Page 1 
 

UNIT-I 

DIFFERENTIAL EQUATIONS OF FIRST ORDER AND FIRST DEGREE 

Definition: An equation involving derivatives of one or more dependent variables with respect to one 

or more independent variables is called a Differential Equation. 

Types of Differential Equations: there are two types of differential equations 

1. Ordinary differential equations 2. Partial differential equations 

Ordinary Differential Equation: A differential equation is said to be ordinary, if the derivatives in 

the equation are ordinary derivatives. 

Ex: 1. xy
dx

dy

dx

dy
cos7

23


















 

      2. yy
dx

dy
x

dx

yd
tan65

2

2

2









  

      3.     0222  dxxyyedyxyx y
 

      4. 

2/1
2

2

2

1























dx

dy

dx

yd
x  

The general form of an ordinary differential equation is 

0,...,,,,
2

2









n

n

dx

yd

dx

yd

dx

dy
yxf  

Partial Differential Equation: A differential equation is said to be partial, if the derivatives in the 

equation have reference to two or more independent variables. 

Ex: 1. 
2

2

22

2

 
1

t

y

cx

y









(One-dimensional wave equation) 

      2. 
t

y

cx

y









 

1
22

2

(One-dimensional heat equation) 

      3. 0 
2

2

2

2











y

u

x

u
(Two-dimensional Laplace’s equation) 

These equations can studied in detail later. 

We now discuss only ordinary differential equations. 

Order of a Differential Equation: The order of the highest order derivative in a differential equation 

is called the order of the differential equation (Or) A differential equation is said to be of order n, if 

the nth order derivative is the highest derivative in that equation. 

Ex: 1.   22 421 xxy
dx

dy
x   

The first order derivative 
dx

dy
is the highest derivative in the above equation. 

∴ The order of above differential equation is 1. 

     2.     xeyx
dx

dy
x

dx

yd
x  112

2

2
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2

2

dx

yd
is the highest derivative in the above equation. 

∴ The order of above differential equation is 2. 

Degree of a Differential Equation: The degree of a differential equation is the highest degree of the 

highest order derivative which occurs in it, after the differential equation has been made free from 

radicals and fractions as far as the derivatives are concerned. 

 Let 
   0,...,,,, ''' nyyyyxf be a differential equation of order n which is free from radicals 

and fractions as far as the derivatives are concerned. If the given differential equation is a polynomial 

in
 ny , then the highest degree of 

 ny is defined as the degree of the differential equation. 

Ex: 1. 

2

1 









dx

dy

dx

dy
xy  

22

1 


















dx

dy

dx

dy
xy  

    0121 2

2

2 







 y

dx

dy
xy

dx

dy
x  

This is a differential equation of order 1. The highest degree of 
dx

dy
is 2. 

Hence the degree of the above differential equation is 2. 

     2. 

3
22

2

2
2

2/3
2

2

2

11



















































dx

dy

dx

yd
a

dx

dy

dx

yd
a  

This is a differential equation of order 2. The highest degree of 
2

2

dx

yd
is 2. 

Hence the degree of the above differential equation is 2. 

Solution of Differential Equation: Any relation between the dependent and independent variables 

not containing their derivatives, which satisfies the given differential equation is called a solution or 

integral of the differential equation. 

 For example, xBxAy sincos  is a solution of 0
2

2

 y
dx

yd
.  

Observe that xBxAy sincos  is a solution of the given differential equation for any real 

constants A and B which are called arbitrary constants. 

General solution: A solution containing the number of independent arbitrary constants which is equal 

to the order of the differential equation is called the general solution or complete solution of the 

equation. 

 For example, 
xx ececy 2

21  is the general solution of 023
2

2

 y
dx

dy

dx

yd
, as it contains 

two independent arbitrary constants. 
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Particular solution: A solution obtained from the general solution of a differential equation by 

giving particular values to the independent arbitrary constants is called a particular solution to the 

given differential equation. 

 For example, some particular solutions of 023
2

2

 y
dx

dy

dx

yd
 are given by 

xxxx eeyeey 22 2,  etc. 

Singular solution: A solution which cannot be obtained from any general solution of a differential 

equation by any choice of the independent arbitrary constants is called a singular solution of the given 

differential equation. 

For example,  2cxy     (1) 

is the general solution of 042

1  yy  (2) 

0y is also a solution of (2). Moreover 0y  cannot be obtained by any choice of c in (1). 

Hence 0y  is a singular solution of (2). 

Formation of differential equation: 

 In general an ordinary differential equation is obtained by eliminating the arbitrary constants 

nccc ,....,, 21 from a relation like   0,....,,,, 21 ncccyx or from a physical problem. 

Consider   0,....,,,, 21 ncccyx    (1) 

Where nccc ,....,, 21 are arbitrary constants. Differentiating (1) successively with respect to x , n times 

and eliminating the n  arbitrary constants nccc ,....,, 21 from the above 1n equations, we obtain the 

differential equation 
   0,...,,,, ''' nyyyyxf . Its general solution is given by the relation (1) itself. 

Examples 

1. By eliminating A and B , form the differential equation of which 
xx BeAey 52  

is a 

solution. 

Solution: Given 
xx BeAey 52  

    (1) 

Differentiating (1) with respect to x successively two times, we get 

xx BeAe
dx

dy
y 52' 52  

    (2) 

xx BeAe
dx

yd
y 52

2

2
'' 254  

    (3) 

Eliminating A and B from (1), (2), and (3), we get 

01030

254

52

11

0

254

52 '''

''

'

''52

'52

52















yyy

y

y

y

yee

yee

yee

xx

xx

xx

 

This is the required differential equation obtained by eliminating the arbitrary constants A and B

from
xx BeAey 52  

. 

2. Find the differential equation corresponding to 
xxx cebeaey 32  where a ,b , c are 

arbitrary constants. 
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Solution: Given 
xxx cebeaey 32      (1) 

Differentiating (1) with respect to x , we get 

xxx cebeae
dx

dy
y 32' 32   

   xxxxx cebecebeae 3232 2  

  xx cebey 32 2 , using (1) 

           Or  
xx cebeyy 32' 2     (2) 

Differentiating (2) with respect to x , we get 

xx cebeyy 32''' 62   

  xxx cecebe 332 222   

   xceyy 3' 22  , using (2) 

           Or  
xceyyy 3''' 223      (3) 

Differentiating (3) with respect to x , we get 

 xx ceceyyy 33'''''' 23623   

 yyyyyy 23323 '''''''''  , using (3) 

06116 ''''''  yyyy  

This is the required differential equation. 

3. Form the differential equation by eliminating the arbitrary constants A and B from the 

equation  xBxAey x sincos  . 

Solution: Given  xBxAey x sincos     (1) 

Differentiating (1) with respect to x , we get 

   xBxAexBxAe
dx

dy
y xx cossinsincos'   

 xBxAey x cossin  , using (1)  (2) 

Again differentiating with respect to x , we get 

   xBxAexBxAe
dx

dy

dx

yd
y xx sincoscossin

2

2
''   









 y

dx

dy
y

dx

dy
, using (1) and (2) 

022
2

2

 y
dx

dy

dx

yd
is the required differential equation. 
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DIFFERENTIAL EQUATIONS OF FIRST ORDER AND OF THE FIRST DEGREE 

Definition: An equation of the form  yxf
dx

dy
,  is called a differential equation of first order and 

of first degree. 

LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER 

 An equation of the form    xQyxP
dx

dy
    (1) 

 where P and Q are either constants or functions of x only is called a linear differential 

equation of first order in y . 

Working rule: To solve the linear equation    xQyxP
dx

dy
   

 (i) Write the integrating factor (I.F.)
 

dxxP

e  

 (ii) Solution is given by       cdxxQy    I.F.  I.F.   

Note 1:Given    xQyxP
dx

dy
  , we may directly proceed as above and solve. Sometimes it may 

be convenient to put the differential equation in the form    yQxyP
dy

dx
   and treat x as the 

dependent variable and y as the independent variable. In this case , the general solution is given by  

      cdyyQx    I.F.  I.F.  where 
 

dyyP

eI.F. . 

Note 2: Remember the following results which are useful in evaluating some integrals directly 

 (i)   cetdtet tt  1  (ii)   cetdtet tt  

 1  

EXAMPLES 

1. Solve xy
dx

dy
x log . 

Solution: Given differential equation is xy
dx

dy
x log  

x

x
y

xdx

dy log1
    (1) 

This is of the form    xQyxP
dx

dy
  , where P and Q are functions of x only. 

Here 
x

x
Q

x
P

log
,

1
  

 
xeee x

dx
x

dxxP




 log

1

I.F.        

General Solution is given by       cdxxQy    I.F.  I.F.   

   cdxxcdxx
x

x
xy  log 

log
   

  cxxxy  1log  
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2. Solve   axxy
dx

dy
x  21 . 

Solution: Given differential equation is   axxy
dx

dy
x  21  

22 11 x

ax
y

x

x

dx

dy





    (1) 

This is a linear equation of first order in y . 

Comparing it with    xQyxP
dx

dy
  , we have 

22 1
,

1 x

ax
Q

x

x
P





  

   

2

1log
2

1

1

1

1
I.F.       

2
2

x
eee

xdx
x

x
dxxP








  

General Solution is given by       cdxxQy    I.F.  I.F.   

   











 cdx
x

x
acdx

xx

ax

x
y  

1
 

1

1

11

1
  

2/32222
 

   cdxxx
a

x

y



 

 2/32

2
12

21
 

 
c

xa

x

y













1
2

3

1

21

12/32

2
, where     

  
1

 

1

'






 n

xf
dxxfxf

n
n

 

c
x

a

x

y








22 11
 

21 xcay  is the required general solution. 

3. Solve   22 121 xxxy
dx

dy
x  . 

Solution: Given differential equation is   22 121 xxxy
dx

dy
x   

22
11

2

x

x
y

x

x

dx

dy





    (1) 

This is a linear equation of first order in y . 

Comparing it with    xQyxP
dx

dy
  , we have 

22
1

,
1

2

x

x
Q

x

x
P





  

   
2

1log1

2

1

1
I.F.       

22

x
eee x

dx
x

x
dxxP





   

General Solution is given by       cdxxQy    I.F.  I.F.   

   











 cdx
x

x
cdx

xx

x

x
y  

1
 

1

1

11

1
  

2/32222
 

   cdxxx
x

y



 

 2/32

2
12

2

1

1
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c

x

x

y













1
2

3

1

2

1

1

12/32

2
, where     

  
1

 

1

'






 n

xf
dxxfxf

n
n

 

c
xx

y








22
1

1

1
 

 22 11 xcxy  is the required general solution. 

 

4. Solve  .22
2xexy

dx

dy   

Solution: Given   equation is 
2

22 xexy
dx

dy   

   
2

22 xeyx
dx

dy   

This is a linear differential equation
 

Here 
2

2and2 xeQxP   

2

2

2
222

.. x

x
xdxxdxdxP

eeeeeFI   

Its solution is     cdxFIQFIy   ....  

cdxyex  2
2

  cxyex  2
2

 

This is the required solution. 

5. 𝐒𝐨𝐥𝐯𝐞   
𝒅𝒚

𝒅𝒙
+ 𝒚 𝐭𝐚𝐧 𝒙 = 𝒄𝒐𝒔𝟑𝒙. 

Solution:  Given differential equation is
𝑑𝑦

𝑑𝑥
+ 𝑦 tan 𝑥 = 𝑐𝑜𝑠3𝑥 

It is a linear differential equation in 𝑦. 

So Integrating Factor = I. F. = 𝑒∫ tan 𝑥 𝑑𝑥 = 𝑒log 𝑠𝑒𝑐 𝑥 = 𝑠𝑒𝑐 𝑥 

Therefore the general solution of given differential equation is 

                          𝑦(I. F. ) = ∫ 𝑐𝑜𝑠3𝑥 . (I. F. ) 𝑑𝑥 + 𝑐 

                          𝑦 𝑠𝑒𝑐 𝑥 = ∫ 𝑐𝑜𝑠3𝑥 . 𝑠𝑒𝑐 𝑥 𝑑𝑥 + 𝑐 

                                         = ∫ 𝑐𝑜𝑠2𝑥  𝑑𝑥 + 𝑐 =
1

2
∫(1 + 𝑐𝑜𝑠 2𝑥) 𝑑𝑥 + 𝑐 

                                         =
1

2
(𝑥 +

𝑠𝑖𝑛 2𝑥

2
) + 𝑐 

6. Solve (𝟏 + 𝒚𝟐) + (𝒙 − 𝒆𝒕𝒂𝒏−𝟏𝒚)
𝒅𝒚

𝒅𝒙
= 𝟎 . 

Solution: Given differential equation is(1 + 𝑦2) + (𝑥 − 𝑒𝑡𝑎𝑛−1𝑦)
𝑑𝑦

𝑑𝑥
= 0  
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                                       ⇒  
𝑑𝑥

𝑑𝑦
+

1

1 + 𝑦2
𝑥 =

𝑒𝑡𝑎𝑛−1𝑦

1 + 𝑦2
                  (1) 

It is a linear differential equation in 𝑥. 

So Integrating Factor = 𝑒
∫

1

1+𝑦2 𝑑𝑦
= 𝑒𝑡𝑎𝑛−1𝑦 

Therefore the general solution of given differential equation is 

                          𝑥(𝐼. 𝐹. ) = ∫
𝑒𝑡𝑎𝑛−1𝑦

1 + 𝑦2
. (𝐼. 𝐹. ) 𝑑𝑦 + 𝑐 

                          𝑥 𝑒𝑡𝑎𝑛−1𝑦 = ∫
𝑒𝑡𝑎𝑛−1𝑦

1 + 𝑦2
. 𝑒𝑡𝑎𝑛−1𝑦  𝑑𝑦 + 𝑐 

                                         = ∫
1

1 + 𝑦2
𝑒2𝑡𝑎𝑛−1𝑦  𝑑𝑦 + 𝑐 

                                         = ∫ 𝑒2𝑢 𝑑𝑢 + 𝑐, Put𝑡𝑎𝑛−1𝑦 = 𝑢 

                                         =
𝑒2𝑢

2
+ 𝑐 =

1

2
𝑒2𝑡𝑎𝑛−1𝑦 + 𝑐 

Hence the required solution of (1) is 

                          𝑥 𝑒𝑡𝑎𝑛−1𝑦 =
1

2
𝑒2𝑡𝑎𝑛−1𝑦 + 𝑐 

7. Solve    32 11  xxy
dx

dy
xx . 

Solution: Given differential equation is  

 

 

 
It is a first order linear differential equation of the form  

 

 

 

 
Therefore the general solution of (1) is 

 

 

 

 



Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa Page 9 
 

Hence the required solution of (1) is 

 

8. Solve xyx
dx

dy
yx costan3sec 223  . 

Solution: Given differential equation is  

xyx
dx

dy
yx costan3sec 223   

3

2 cos
tan

3
sec        .,.

x

x
y

xdx

dy
yei    (1) 

Put 
dx

du

dx

dy
yuy  2sec then tan  

3

cos3
  (1) 

x

x
u

xdx

du
     (2) 

It is a first order linear differential equation of the form    xQuxP
dx

du
  , we have 

3

cos
,

3

x

x
Q

x
P   

  3log3

3

I.F.       xeee x
dx

x
dxxP




  

Therefore the general solution of (1) is 

      cdxxQu    I.F.  I.F.   

cdxx
x

x
xu      

cos
  3

3

3
 

cdxxxy    cos  tan 3

 

cxyx  sintan3
 

It is the required solution of (1). 

9. Solve .tancos2 xy
dx

dy
x   

Solution: Given equation xy
dx

dy
x tancos2   

   xxyx
dx

dy 22 sectansec   

 This is a linear equation in y . 

Here xxQxP 22 sectan     and      sec   

xdxxdxP

eeeFI tansec2

..     

The solution of given differential equation is 
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    cdxIFQIFy    

cdxexxye xx  
tan2tan sec tan   

  ctecdtetye ttt   1  (Put dtdxxtx  2sec,tan ) 

  cxeye xx  1tantantan
 

  xcexy tan1tan   

which is the required solution. 

10. Solve .sec2 dyyexdydx y  

Solution: Given equation can be written as yex
dy

dx y 2sec  

Here  1P  and    yeQ y 2sec  

ydydyP

eeeFI 
1

..  

Solution is given by  

    cdyIFQIFx    

cdyeexe yyy  
 2sec cy  

2sec   

cyxey  tan , which is the required solution. 

BERNOULLI’S EQUATION 

 A first order and first degree differential equation of the form 

    nyxQyxP
dx

dy
      (1) 

is called Bernoulli’s equation if P and Q are constants or functions of x alone and n is a real 

constant. 

Case 1: If 1n then the equation (1) can be written as 

  0  yQP
dx

dy
    (2) 

Here the variables are separable. The general solution is 

  0   dxQP
y

dy
 

Case 2:If 1n , multiplying (1) with 
ny 

, we get  

   xQyxP
dx

dy
y nn   1

     (3)  

Now, putting  
nyz  1

  and     
dx

dy
yn

dx

dz n 1  in equation (3), we get 

    xQzxP
dx

dz

n



 

1

1
   

        xQnzxPn
dx

dz
 1 1     (4)   

  This is a first order linear differential equation in z. 

   
 dx 1

..         
xPn

eFI
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Hence the general solution of (3) is 

       cdxFIxQnFIz    .. 1..  

   
   

   
cdxexQnez

xPnxPn








 






  

   1
dx 1dx 1

                                (4) 

Substituting 
nyz  1

 in (4), we get the general solution of (1). 

Examples 

1. Solve  .63 yxy
dx

dy
x   

Solution:  Given equation is
63 yxy

dx

dy
x   

(1)                               62 yx
x

y

dx

dy
  

It is of the form  
nQyPy

dx

dy
  we have 

 
62 and,

1
yyxQ

x
P n 

 

Multiplying on both sides of (1) by 
6y , we get

 

  
       62666 yxy

x

y
y

dx

dy
y    

256 1
xy

xdx

dy
y  

   (2) 

dx

dy
y

dx

du
yu 65 5 then Put    

dx

dy
y

dx

du 6

5

1      (3) 

Using (3) in (2), we get 

 5
5

      
1

5

1 22 xu
xdx

du
xu

xdx

du
   (4) 

It is a linear differential equation in u. 

Here 
25and

5
xQ

x
P 


  

5

5loglog5

1
5

5
1

..
5

x
xeeeeeFI xx

dx
x

dx
xdxP







 








 


 

Its solution is     cdxFIQFIu   .. ..  

   cdx
x

cdx
x

x
x

u   35

2

5

1
5

1
5

1
 

C
x

c
x







2

13

2

5

13
5

 

Since 
5 yu then the general solution of (1) is
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 5
3

5255
 

2

51

2

51
xc

x

y
c

xxy
  

 This is the required solution. 

 

2. Solve   .132  xyyx
dx

dy
 

Solution: Given equation is   132  xyyx
dx

dy

 

32 yxxy
dy

dx
    (1) 

 This is a Bernoulli’s equation in ‘ x ’ 

Multiplying (1) with 
2x , we get 

32222 yxxxyx
dy

dx
x   

312 yyx
dy

dx
x  

        (2)  

  then Put 221

dy

dx
x

dy

du

dy

dx
x

dy

du
xu    (3) 

Using (3) in (2), we get 

             33 yuy
dx

du
yuy

dy

du
           (4) 

It is a linear differential equation in u. 

Here 
3and yQyP   

2

2

..

y
dyydyP

eeeFI   

Its solution is     cdyFIQFIu   ....  

  cdyeycdyeyue

yyy

  23232

222

 









  dtdyyt

y
cdtetcdyeyy t

y

  then 
2

Put      2
2

22

2

 

  ctecdtet tt   122  

c
y

eeu

yy









 1

2
2 

2

22

22

 

x
xuceyee

x

yyy
1

 Since    2
1 12222

222

 

 

  cey
x

cyee
x

yyy









 22222

222

2
1

or          2
1

 

  This is the required solution. 
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3. Solve xyxy
dx

dy
sec tan 2 . 

Solution: Given equation is  xyxy
dx

dy
sec tan 2   (1) 

Multiplying on both sides of (1) by 
2y   we get 

xxy
dx

dy
y sectan 12  

  (2) 

Put uy 1
, then 

dx

du

dx

dy
y  2

    (3) 

Using (3) in (2), we get 

 xxu
dx

du
sectan  or xxu

dx

du
sectan   (4) 

This is a linear differential equation in u .   

  xeeeFI xdx xdxP

 cos..  coslog tan




  

Therefore the general solution of (4) is 

    cdxFIQFIu   ....   

cxcdxcdxxxxu    cos seccos  

or cxx
y

cos
1

 since 
y

yu
11  

  

this is the required general solution of (1). 

4. Solve   xyxy
dx

dy
x 132 sin1  . 

Solution:  Given equation is    xyxy
dx

dy
x 132 sin1   

Dividing throughout by  21 x , 
2

1
3

2 1

sin

1 x

x
yy

x

x

dx

dy









  (1) 

Multiplying on both sides of (1) by 
3y   we get 

2

1
2

2

3

1

sin

1 x

x
y

x

x

dx

dy
y










   (2) 

Put uy 2
, then 

dx

du

dx

dy
y

dx

du

dx

dy
y

2

1
2 33  

  (3) 

Using (3) in (2), we get 

 
2

1

2 1

sin

12

1

x

x
u

x

x

dx

du









or
2

1

2 1

sin2

1

2

x

x
u

x

x

dx

du









 (4) 

This is a linear differential equation in u .   

  21log
 

1

2

1..
22

xeeeFI x
dx

x

x
dxP




 



  

Therefore the general solution of (4) is 

    cdxFIQFIu   ....   
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    cdxxcdxx
x

x
xu 


 




 sin2 1 
1

sin
21 12

2

1
2

 

    cxxxxu   212 1sin21 , integration by parts 

since
2

2 1

y
yu  

we get the general solution of (1) is 

  cxxx
y

x


  21

2

2

1sin2
1

 

5. Solve 
xx yexy

dx

dy
e  22 . 

Solution:  Given equation is  
xx yexy

dx

dy
e  22  

Dividing throughout by
xe , 

22 yxey
dx

dy x   (1) 

This is Bernoulli’s equation. Multiplying on both sides of (1) by 
2y   we get 

xxey
dx

dy
y   212

   (2) 

Put uy  1
, then 

dx

du

dx

dy
y 2

  (3) 

Using (3) in (2), we get 

 
xxeu

dx

du  2    (4) 

This is a linear differential equation in u .   

xdxdxP

eeeFI ..   

Therefore the general solution of (4) is 

    cdxFIQFIu   ....   

cxcdxxcdxexeeu xxx  
 2 2  2  

since
y

yu
11  

we get the general solution of (1) is 

cx
y

ex

 2
 

DIFFERENTIAL EQUATIONS REDUCIBLE TO LINEAR EQUATION BY SUBSTITUTION 

1. Solve 
32 tan 2sec xyx

dx

dy
y  . 

Solution: Given equation is 
32 tan 2sec xyx

dx

dy
y    (1) 

Put uy tan so that 
dx

du

dx

dy
y 2sec  

Substituting these values in (1), we get 

3 2 xux
dx

du
    (2) 
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This is a linear equation in u . Here xP 2 and 
3xQ   

2 2

.. xdxxdxP

eeeFI    

Therefore the general solution of (2) is 

    cdxFIQFIu   ....  

  cexcdxexeu xxx  
222

1
2

1
 23

(Put tx 2
so that dtxdx

2

1
 ) 

Substituting yu tan , we get the general solution of (1) is 

  cexye xx 
22

1
2

1
tan 2

 

2. Solve yxyx
dx

dy 23 cos2sin   . 

Solution: Given equation is  yxyx
dx

dy 23 cos2sin     (1) 

This can be written as 
3

22 cos

cos 2sin 
 

cos

1
x

y

yy
x

dx

dy

y
  

32 tan 2sec xyx
dx

dy
y    (2) 

Put uy tan so that 
dx

du

dx

dy
y 2sec  

Substituting these values in (2), we get 

3 2 xux
dx

du
    (3) 

This is a linear equation in u . Here xP 2 and 
3xQ   

2 2

.. xdxxdxP

eeeFI    

Therefore the general solution of (3) is 

    cdxFIQFIu   ....  

  cexcdxexeu xxx  
222

1
2

1
 23

(Put tx 2
so that dtxdx

2

1
 ) 

Substituting yu tan , we get the general solution of (2) is 

  cexye xx 
22

1
2

1
tan 2

 

3. Solve  322 1sin
1

2
cos 2 


 xy

xdx

dy
yy . 

Solution: Given equation is   322 1sin
1

2
cos 2 


 xy

xdx

dy
yy   (1) 

Put 
dx

du

dx

dy
yyuy  22 cos 2 then sin  

Substituting these values in (1), we get 

 31 
1

2



 xu

xdx

du
     (2) 
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This is a linear equation in u . Here  
1

2




x
P and  31 xQ  

 

 2
1log2

 
1

2

1

1
..





 



x
eeeFI x

dx
x

dxP
  

Therefore the general solution of (2) is       cdxFIQFIu   ....  

 
 

 
  cdxxcdx

x
x

x
u 





 1

1

1
1

1

1
 

2

3

2
 

 
   

 2
42

2
1

2

1
or             

2

1

1

1
 








xc

x
uc

x

x
u  

Substituting 
2sin yu  , we get the general solution of (1) is 

 
 2

4

2 1
2

1
sin 


 xc

x
y  

EXACT DIFFERENTIAL EQUATIONS 

 The differential of a function  yxf ,  is denoted by df and is given by  

dy
y

f
dx

x

f
df









      (1) 

 Consider     0,,  dyyxNdxyxM     (2) 

Suppose  yxM
x

f
,




     (3) 

and  yxN
y

f
,




      (4) 

Using equations (3) and (4), then the equation (1) becomes 

     0, 








 dyyxNdxyxMdy

y

f
dx

x

f
df  

 i.e., 0df   

On integration,   cyxf , , arbitrary constant. 

Therefore the expression of (2), 0 dyNdxM is said to be an exact differential equation if there 

exists a function  yxf , such that 
y

f
N

x

f
M









  and . 

Ex: 1. 02 2  dyxxydx  

      2. 0 xdyydx  

Condition for Exactness 

 If  yxM , and  yxN , are two real valued functions which have continuous partial 

derivatives, then a necessary and sufficient condition for the differential equation 0 dyNdxM

to be exact is 
x

N

y

M









. 

Working rule to solve an Exact Differential Equation 

Step 1: Let the differential equation be of the form     0,,  dyyxNdxyxM . 
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Check the condition for exactness 
x

N

y

M









, if exact proceed to step 2.  

Step 2: The solution of the given equation is cdyNdxM     

 In the first integral treating y  as constant and in second integral take only those terms in N 

which do not contain x . 

(OR) the solution the given equation is 

 

  cdyNxdxM
y

  in   oft independen terms 
constant 

 

EXAMPLES 

1. Solve     0 dxghyaxdyfbyhx . 

Solution: Given differential equation is  

    0 dxghyaxdyfbyhx    (1) 

This is of the form 0 dyNdxM , where 

fbyhxNghyaxM   and  

Now h
x

N
h

y

M










     ,  

x

N

y

M









  

Hence the given differential equation is exact. 

The general solution is given by 

 

  cdyNxdxM
y

  in   oft independen terms 
constant 

 

 
 

  cdyfbydxghyax
y

 
constant 

  

cfy
y

bgxhyx
x

a 
22

22

 

cbyfygxhyxax  22 222  

This is the required general solution of (1). 

2. Solve     01212  dyxydxyx . 

Solution: Given differential equation is  

    01212  dyxydxyx    (1) 

This is of the form 0 dyNdxM , where 

12 and 12  xyNyxM  

Now 1     ,1 









x

N

y

M
 

x

N

y

M









  

Hence the given differential equation is exact. 

The general solution is given by 

 

  cdyNxdxM
y

  in   oft independen terms 
constant 
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  cdyydxyx
y

  12 12
constant 

 

cyyxyxx  22
 

cyyxxyx  22
 

This is the required general solution of (1). 

3. Solve   011 // 







 dy

y

x
edxe yxyx

. 

Solution:   Given differential equation is  

 

It is of the form  , we have 

and  

 

 

(1) is an Exact differential equation.  

So the general solution of (1) is 

 

 

 

4. Solve   0 sin cos1  dyxedxxe yy
. 

Solution: Given differential equation is  

  0 sin cos1  dyxedxxe yy
   (1) 

This is of the form 0 dyNdxM , where 

  xeNxeM yy sin  and cos1   

Now xe
x

N
xe

y

M yy cos     ,cos 








 

x

N

y

M









  

Hence the given differential equation is exact. 

The general solution is given by 



Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa Page 19 
 

 

  cdyNxdxM
y

  in   oft independen terms 
constant 

 

 
 

  cdydxxe
y

y   0 cos1
constant 

 

  cdxxe y   0 cos1  

  cxe y  sin1  

This is the required general solution of (1). 

5. Solve    dyxyxdxxyy  2 2 22  . 

Solution: Given differential equation is  

   dyxyxdxxyy  2 2 22    

    0 2 2 22  dyxxydxxyy    (1) 

This is of the form 0 dyNdxM , where 

22 2  and    2 xxyNxyyM   

Now xy
x

N
xy

y

M
22     ,22 









 

x

N

y

M









  

Hence the given differential equation is exact. 

The general solution is given by 

 

  cdyNxdxM
y

  in   oft independen terms 
constant 

 

 
 

  cdydxxyy
y

  0 2
constant 

2
 

cyxxy  22
 

This is the required general solution of (1). 

EQUATIONS REDUCIBLE TO EXACT EQUATIONS 

Integrating Factor: 

Let 0 dyNdxM be not an exact differential equation.  

If 0 dyNdxM can be made exact by multiplying it with a suitable factor   0, yxu called an 

integrating factor.   

Example: Let 𝑦𝑑𝑥 − 𝑥𝑑𝑦 = 0              (1) 

Here 𝑀 = 𝑦, 𝑁 = −𝑥 

Then
𝜕𝑀

𝜕𝑦
= 1 and

𝜕𝑁

𝜕𝑥
= −1 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

Multiplying (1) with 1/𝑥2, we get 

𝑦

𝑥2
𝑑𝑥 −

1

𝑥
𝑑𝑦 = 0          (2) 
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Here 𝑀 =
𝑦

𝑥2
, 𝑁 = −

1

𝑥
 

Since
𝜕𝑀

𝜕𝑦
=

1

𝑥2
=

𝜕𝑁

𝜕𝑥
 

So (2) is an exact differential equation. 

Hence 1/𝑥2 is an integrating factor of  𝑦𝑑𝑥 − 𝑥𝑑𝑦 = 0. 

Note: Also since  
2y

xdyydx

y

x
d











, 

xy

xdyydx

y

x
d











log ,  

22

1tan
yx

xdyydx

y

x
d












 
 

The functions 
222

1
 ,

1
 ,

1

yxxyy 
 are also integrating factors of𝑦𝑑𝑥 − 𝑥𝑑𝑦 = 0. 

From the above example we observe that a differential equation can have more than one 

integrating factor. 

Methods to find integrating factor of 𝑴𝒅𝒙 + 𝑵𝒅𝒚 = 𝟎 

Method 1: with some experience integrating factors can be found by inspection. For this purpose the 

student should keep in mind the following differentials. 

1.     dxydyxxyd     2.   dyydxx
yx

d 






 

2

22

   

3.   
2x

dxydyx

x

y
d











   4. 

2y

dyxdxy

y

x
d












   

 

5. 
xy

dxydyx

x

y
d



















log   6. 

xy

dyxdxy

y

x
d
























log  

7. 
22

1tan
yx

dxydyx

x

y
d





















  8. 

22

1tan
yx

dyxdxy

y

x
d


























 

9.   
xy

dyxdxy
xyd


log   10.     

22

22 2
log

yx

ydyxdx
yxd




  

Examples 

1. Solve   022  dxyxadxydyx  

Solution: Given equation is   022  dxyxadxydyx  

 0
22





dxa

yx

dxydyx
 

Integrating cdxa
yx

ydxxdy





 22

 

cax
x

y








1tan  

Which is the required solution. 

2. Solve 
22 yx

dxydyx
dyydxx




  

Solution: Given equation is 
22 yx

dxydyx
dyydxx
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x

y
d

yx
d 1

22

tan
2

 

Integrating c
x

y
d

yx
d 
























  


1

22

tan
2

 

c
x

yyx












 1

22

tan
2

  

 c
x

y
yx 2tan2 122 








 

 

which is the required solution. 

3. Solve  dxyxaxdyydx 22 
 

Solution: Given equation is    dxyxaxdyydx 22   

 adx
yx

xdyydx





22

 

adx
y

x
d 





















 1tan  

Integrating, we get cax
y

x








1tan ,  which is the required solution. 

4. Solve dxxyydxxdy 2  

Solution: Given equation is dxxyydxxdy 2  

0  
22








y

ydxxdy
xdxxdx

y

ydxxdy
 

0  0 
2














y

x
dxdx

y

xdyydx
xdx  

Integrating, we get c
y

xx


2

2

 

This is the required solution. 

5. Solve  
 

0
2




y

dyedxexyy xx

. 

Solution: Given equation is 
 

0
2




y

dyedxexyy xx

 

 
0  0

22

2








y

dyedxye
xdx

y

dyedxyexy xxxx

 

0 









y

e
dxdx

x
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Integrating, we get c
y

ex x


2

2

 

Method 2: If 0 NdyMdx is a homogeneous differential equation and 0 NyMx then 

NyMx 

1
is an integrating factor of 0 NdyMdx . 

EXAMPLES 

1. Solve  𝒙𝟐𝒚 𝒅𝒙 − (𝒙𝟑 + 𝒚𝟑)𝒅𝒚 = 𝟎.  

Solution: Given differential equation is  

𝑥2𝑦 𝑑𝑥 − (𝑥3 + 𝑦3)𝑑𝑦 = 0               (1) 

This is of the form  𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑥2𝑦 and 𝑁 = 𝑥3 + 𝑦3 

Then
𝜕𝑀

𝜕𝑦
= 𝑥2and

𝜕𝑁

𝜕𝑥
= 3𝑥2 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is homogeneous differential equation and  

𝑀𝑥 + 𝑁𝑦 = 𝑥3𝑦 + (−𝑥3 − 𝑦3)𝑦 = −𝑦4 ≠ 0 

∴     I. F. =
1

𝑀𝑥 + 𝑁𝑦
= −

1

𝑦4
 

Multiplying (1) with  −
1

𝑦4 , we get 

          −
𝑥2

𝑦3
𝑑𝑥 + (

𝑥3 + 𝑦3

𝑦4
) 𝑑𝑦 = 0 

          −
𝑥2

𝑦3
𝑑𝑥 + (

𝑥3

𝑦4
+

1

𝑦
) 𝑑𝑦 = 0            (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 = −
𝑥2

𝑦3
and𝑁1 =

𝑥3

𝑦4
+

1

𝑦
 

Then
𝜕𝑀1

𝜕𝑦
=

3𝑥2

𝑦4
and

𝜕𝑁1

𝜕𝑥
=

3𝑥2

𝑦4
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫ (−
𝑥2

𝑦3
)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫
1

𝑦
𝑑𝑦 = 𝑐  ⇒   −

1

𝑦3
∫ 𝑥2  𝑑𝑥 + ∫

1

𝑦
𝑑𝑦 = 𝑐 

⇒   −
1

𝑦3
(

𝑥3

3
) + 𝑙𝑜𝑔 𝑦 = 𝑐  ⇒  −

𝑥3

3𝑦3
+ 𝑙𝑜𝑔 𝑦 = 𝑐 

It is the required general solution of (1). 
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2. Solve 𝒚𝟐𝒅𝒙 + (𝒙𝟐 − 𝒙𝒚 − 𝒚𝟐)𝒅𝒚 = 𝟎. 

Solution: Given differential equation is  

𝑦2𝑑𝑥 + (𝑥2 − 𝑥𝑦 − 𝑦2)𝑑𝑦 = 0               (1) 

This is of the form 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑦2and 𝑁 = 𝑥2 − 𝑥𝑦 − 𝑦2 

Then
𝜕𝑀

𝜕𝑦
= 2𝑦 and

𝜕𝑁

𝜕𝑥
= 2𝑥 − 𝑦 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is homogeneous differential equation and  

𝑀𝑥 + 𝑁𝑦 = 𝑦2𝑥 + (𝑥2 − 𝑥𝑦 − 𝑦2)𝑦 = 𝑦(𝑥2 − 𝑦2) ≠ 0 

∴     I. F. =
1

𝑀𝑥 + 𝑁𝑦
=

1

𝑦(𝑥2 − 𝑦2)
 

Multiplying (1) with  
1

𝑦(𝑥2−𝑦2)
, we get 

𝑦2

𝑦(𝑥2 − 𝑦2)
𝑑𝑥 + [

𝑥2 − 𝑥𝑦 − 𝑦2

𝑦(𝑥2 − 𝑦2)
] 𝑑𝑦 = 0 

𝑦

𝑥2 − 𝑦2
𝑑𝑥 + (

1

𝑦
−

𝑥

𝑥2 − 𝑦2
) 𝑑𝑦 = 0            (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 =
𝑦

𝑥2 − 𝑦2
 and    𝑁1 =

1

𝑦
−

𝑥

𝑥2 − 𝑦2
 

Then
𝜕𝑀1

𝜕𝑦
=

(𝑥2 − 𝑦2). 1 − 𝑦. (0 − 2𝑦)

(𝑥2 − 𝑦2)2
=

𝑥2 + 𝑦2

(𝑥2 − 𝑦2)2
 

and
𝜕𝑁1

𝜕𝑥
= −

(𝑥2 − 𝑦2). 1 − 𝑥. (0 − 2𝑥)

(𝑥2 − 𝑦2)2
=

𝑥2 + 𝑦2

(𝑥2 − 𝑦2)2
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(terms of𝑁1not cotaining 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫
𝑦

𝑥2 − 𝑦2

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫
1

𝑦
𝑑𝑦 = 𝑐   

⇒  
1

2
𝑙𝑜𝑔 (

𝑥 − 𝑦

𝑥 + 𝑦
) + 𝑙𝑜𝑔 𝑦 = 𝑐   

It is the required general solution of (1). 

𝟑. 𝐒𝐨𝐥𝐯𝐞 𝒚 − 𝒙
𝒅𝒚

𝒅𝒙
= 𝒙 + 𝒚

𝒅𝒚

𝒅𝒙
 . 

Solution: Given differential equation is  

𝑦 − 𝑥
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦

𝑑𝑦

𝑑𝑥
 

𝑖. 𝑒., (𝑥 − 𝑦)𝑑𝑥 + (𝑥 + 𝑦)𝑑𝑦 = 0               (1) 

This is of the form 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 
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𝑀 = 𝑥 − 𝑦 and 𝑁 = 𝑥 + 𝑦 

Then
𝜕𝑀

𝜕𝑦
= −1 and

𝜕𝑁

𝜕𝑥
= 1 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is a homogeneous differential equation and  

𝑀𝑥 + 𝑁𝑦 = (𝑥 − 𝑦)𝑥 + (𝑥 + 𝑦)𝑦 = 𝑥2 + 𝑦2 ≠ 0 

∴     I. F. =
1

𝑀𝑥 + 𝑁𝑦
=

1

𝑥2 + 𝑦2
 

Multiplying (1) with  
1

𝑥2+𝑦2, we get 

(
𝑥 − 𝑦

𝑥2 + 𝑦2
) 𝑑𝑥 + (

𝑥 + 𝑦

𝑥2 + 𝑦2
) 𝑑𝑦 = 0                  (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 =
𝑥 − 𝑦

𝑥2 + 𝑦2
 and    𝑁1 =

𝑥 + 𝑦

𝑥2 + 𝑦2
 

Then
𝜕𝑀1

𝜕𝑦
=

(𝑥2 + 𝑦2). (−1) − (𝑥 − 𝑦). (0 + 2𝑦)

(𝑥2 + 𝑦2)2
=

𝑦2 − 𝑥2 − 2𝑥𝑦

(𝑥2 + 𝑦2)2
 

and  
𝜕𝑁1

𝜕𝑥
=

(𝑥2 + 𝑦2). 1 − (𝑥 + 𝑦). (0 + 2𝑥)

(𝑥2 + 𝑦2)2
=

𝑦2 − 𝑥2 − 2𝑥𝑦

(𝑥2 + 𝑦2)2
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫
𝑥 − 𝑦

𝑥2 + 𝑦2

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(0) 𝑑𝑦 = 𝑐   

⇒ ∫
𝑥

𝑥2 + 𝑦2

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 − ∫
𝑦

𝑥2 + 𝑦2

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + 0 = 𝑐 

⇒  
1

2
𝑙𝑜𝑔(𝑥2 + 𝑦2) − 𝑡𝑎𝑛−1 (

𝑥

𝑦
) = 𝑐   

It is the required general solution of (1). 

𝟒. 𝐒𝐨𝐥𝐯𝐞 𝒙𝒚 𝒅𝒙 − (𝒙𝟐 + 𝒚𝟐)𝒅𝒚 = 𝟎 . 

Solution: Given differential equation is  

𝑥𝑦 𝑑𝑥 − (𝑥2 + 𝑦2)𝑑𝑦 = 0                  (1) 

This is of the form  𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑥𝑦 and 𝑁 = −𝑥2 − 𝑦2 

Then
𝜕𝑀

𝜕𝑦
= 𝑥   and   

𝜕𝑁

𝜕𝑥
= −2𝑥 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 
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But (1) is a homogeneous differential equation and  

𝑀𝑥 + 𝑁𝑦 = (𝑥𝑦)𝑥 + (−𝑥2 − 𝑦2)𝑦 = −𝑦3 ≠ 0 

∴     I. F. =
1

𝑀𝑥 + 𝑁𝑦
= −

1

𝑦3
 

Multiplying (1) with  
−1

𝑦3 , we get 

(
𝑥𝑦

−𝑦3
) 𝑑𝑥 − (

𝑥2 + 𝑦2

−𝑦3
) 𝑑𝑦 = 0 

𝑥

−𝑦2
𝑑𝑥 + (

𝑥2

𝑦3
+

1

𝑦
) 𝑑𝑦 = 0                               (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 =
𝑥

−𝑦2
   and    𝑁1 =

𝑥2

𝑦3
+

1

𝑦
 

Then
𝜕𝑀1

𝜕𝑦
=

2𝑥

𝑦3
and  

𝜕𝑁1

𝜕𝑥
=

2𝑥

𝑦3
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫ (
𝑥

−𝑦2
)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫ (
1

𝑦
) 𝑑𝑦 = 𝑐   

⇒
1

𝑦2
∫ 𝑥  𝑑𝑥 + 𝑙𝑜𝑔 𝑦 = 𝑐 

⇒  
𝑥

𝑦2
+ 𝑙𝑜𝑔 𝑦 = 𝑐   

It is the required general solution of (1). 

5. Solve     .023 2232  dyxyyxdxyxy  

Solution: Given equation is     023 2232  dyxyyxdxyxy  

Here 
323 yxyM    222 xyyxN   

We have 
236 yxy

y

M





 

24 yxy
x

N





 


x

N

y

M









. Hence it is not exact.  It is a homogeneous equation 

NyMx
FI




1
..

22

1

yx
  

Multiplying with I.F. we get 

   
0

23
22

22

22

32







dy
yx

xyyx
dx

yx

yxy
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0
123

2


















 dy

xy
dx

x

y

x
         (2) 

This is an exact equation, its solution is 

0
123

2


















  dy

xy
dx

x

y

x
 

 cy
x

yx 






 
 log2

1
log3  

cy
x

y
x  log2log3 , which is the required solution. 

6. Find an integrating factor so that  
𝒅𝒚

𝒅𝒙
=

𝒚

𝒙
+

𝒙𝟐+𝒚𝟐

𝒙𝟐 . 

Solution: Given differential equation is  

𝑑𝑦

𝑑𝑥
=

𝑦

𝑥
+

𝑥2 + 𝑦2

𝑥2
    ⇒   

𝑑𝑦

𝑑𝑥
=

𝑥𝑦 + 𝑥2 + 𝑦2

𝑥2
 

(𝑥𝑦 + 𝑥2 + 𝑦2)𝑑𝑥 − 𝑥2𝑑𝑦 = 0 

It is of the form 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0 and it is a homogeneous differential equation. 

So integrating factor =
1

𝑀𝑥 + 𝑁𝑦
=

1

(𝑥𝑦 + 𝑥2 + 𝑦2)𝑥 − 𝑥2𝑦
=

1

𝑥(𝑥2 + 𝑦2)
 

Method 3: If the differential equation 0 NdyMdx is of the form 

    0  21  dyyxfxdxyxfy , then I.F.=
NyMx 

1
 provided 0 NyMx  . 

1. Solve 𝒚(𝒙𝟐𝒚𝟐 + 𝟐) 𝒅𝒙 + 𝒙(𝟐 − 𝟐𝒙𝟐𝒚𝟐)𝒅𝒚 = 𝟎. 

Solution: Given differential equation is  

𝑦(𝑥2𝑦2 + 2) 𝑑𝑥 + 𝑥(2 − 2𝑥2𝑦2)𝑑𝑦 = 0               (1) 

This is of the form  𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑦(𝑥2𝑦2 + 2)and 𝑁 = 𝑥(2 − 2𝑥2𝑦2) 

Then
𝜕𝑀

𝜕𝑦
= 3𝑥2𝑦2 + 2 and

𝜕𝑁

𝜕𝑥
= 2 − 6𝑥2𝑦2 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is of the form      0  21  dyyxfxdxyxfy  and  

𝑀𝑥 − 𝑁𝑦 = 𝑦(𝑥2𝑦2 + 2)𝑥 − 𝑥(2 − 2𝑥2𝑦2)𝑦 = 3𝑥3𝑦3 ≠ 0 

∴     I. F. =
1

𝑀𝑥 − 𝑁𝑦
=

1

3𝑥3𝑦3
 

Multiplying (1) with 
1

3𝑥3𝑦3, we get 

𝑦(𝑥2𝑦2 + 2)

3𝑥3𝑦3
 𝑑𝑥 +

𝑥(2 − 2𝑥2𝑦2)

3𝑥3𝑦3
𝑑𝑦 = 0 
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(
1

3𝑥
+

2

3𝑥3𝑦2
) 𝑑𝑥 + (

2

3𝑥2𝑦3
−

2

3𝑦
) 𝑑𝑦 = 0            (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 =
1

3𝑥
+

2

3𝑥3𝑦2
and𝑁1 =

2

3𝑥2𝑦3
−

2

3𝑦
 

Then
𝜕𝑀1

𝜕𝑦
=

−4

3𝑥3𝑦3
and

𝜕𝑁1

𝜕𝑥
=

−4

3𝑥3𝑦3
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫ (
1

3𝑥
+

2

3𝑥3𝑦2
)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫ (−
2

3𝑦
) 𝑑𝑦 = 𝑐   

⇒  
1

3
∫

1

𝑥
𝑑𝑥 +

2

3𝑦2
∫

1

𝑥3
 𝑑𝑥 −

2

3
∫

1

𝑦
𝑑𝑦 = 𝑐 

⇒
1

3
log 𝑥 +

2

3𝑦2
(−

1

2𝑥2
) −

2

3
log 𝑦 = 𝑐   

⇒  
1

3
log 𝑥 −

1

3𝑥2𝑦2
−

2

3
log 𝑦 = 𝑐 

It is the required general solution of (1). 

2. Solve 𝒚(𝒙𝒚 𝒔𝒊𝒏 𝒙𝒚 + 𝒄𝒐𝒔 𝒙𝒚)𝒅𝒙 + 𝒙(𝒙𝒚 𝒔𝒊𝒏 𝒙𝒚 − 𝒄𝒐𝒔 𝒙𝒚)𝒅𝒚 = 𝟎. 

Solution: Given differential equation is  

𝑦(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 + 𝑐𝑜𝑠 𝑥𝑦)𝑑𝑥 + 𝑥(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 − 𝑐𝑜𝑠 𝑥𝑦)𝑑𝑦 = 0               (1) 

This is of the form 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑦(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 + 𝑐𝑜𝑠 𝑥𝑦)and 𝑁 = 𝑥(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 − 𝑐𝑜𝑠 𝑥𝑦) 

Then
𝜕𝑀

𝜕𝑦
= (𝑥2𝑦2 + 1)𝑐𝑜𝑠 𝑥𝑦 + 𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 

and
𝜕𝑁

𝜕𝑥
= (𝑥2𝑦2 − 1)𝑐𝑜𝑠 𝑥𝑦 + 3𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is of the form      0  21  dyyxfxdxyxfy  and  

   𝑀𝑥 − 𝑁𝑦 = 𝑦(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 + 𝑐𝑜𝑠 𝑥𝑦)𝑥 − 𝑥(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 − 𝑐𝑜𝑠 𝑥𝑦)𝑦 

= 2𝑥𝑦 𝑐𝑜𝑠 𝑥𝑦 ≠ 0 

∴     I. F. =
1

𝑀𝑥 − 𝑁𝑦
=

1

2𝑥𝑦 𝑐𝑜𝑠 𝑥𝑦
 

Multiplying (1) with 
1

2𝑥𝑦 𝑐𝑜𝑠 𝑥𝑦
, we get 

𝑦(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 + 𝑐𝑜𝑠 𝑥𝑦)

2𝑥𝑦 𝑐𝑜𝑠 𝑥𝑦
 𝑑𝑥 +

𝑥(𝑥𝑦 𝑠𝑖𝑛 𝑥𝑦 − 𝑐𝑜𝑠 𝑥𝑦)

2𝑥𝑦 𝑐𝑜𝑠 𝑥𝑦
𝑑𝑦 = 0 
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(
𝑦

2

𝑠𝑖𝑛 𝑥𝑦

𝑐𝑜𝑠 𝑥𝑦
+

1

2𝑥
) 𝑑𝑥 + (

𝑥

2

𝑠𝑖𝑛 𝑥𝑦

𝑐𝑜𝑠 𝑥𝑦
−

1

2𝑦
) 𝑑𝑦 = 0 

(
𝑦

2
 𝑡𝑎𝑛 𝑥𝑦 +

1

2𝑥
) 𝑑𝑥 + (

𝑥

2
 𝑡𝑎𝑛 𝑥𝑦 −

1

2𝑦
) 𝑑𝑦 = 0                   (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 =
𝑦

2
 𝑡𝑎𝑛 𝑥𝑦 +

1

2𝑥
and𝑁1 =

𝑥

2
 𝑡𝑎𝑛 𝑥𝑦 −

1

2𝑦
 

Then
𝜕𝑀1

𝜕𝑦
=

1

2
(𝑡𝑎𝑛 𝑥𝑦 + 𝑥𝑦 𝑠𝑒𝑐2𝑥𝑦)and

𝜕𝑁1

𝜕𝑥
=

1

2
(𝑡𝑎𝑛 𝑥𝑦 + 𝑥𝑦 𝑠𝑒𝑐2𝑥𝑦) 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫ (
𝑦

2
 𝑡𝑎𝑛 𝑥𝑦 +

1

2𝑥
)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫ (−
1

2𝑦
) 𝑑𝑦 = 𝑐   

⇒
𝑦

2
∫ 𝑡𝑎𝑛 𝑥𝑦 𝑑𝑥 +

1

2
∫

1

𝑥
 𝑑𝑥 −

1

2
∫

1

𝑦
𝑑𝑦 = 𝑐 

⇒
𝑦

2

log(𝑠𝑒𝑐 𝑥𝑦)

𝑦
+

1

2
𝑙𝑜𝑔 𝑥 −

1

2
𝑙𝑜𝑔 𝑦 = 𝑐   

⇒  
1

2
log (

𝑥

𝑦
𝑠𝑒𝑐 𝑥𝑦) = 𝑐 

⇒
𝑥

𝑦
𝑠𝑒𝑐 𝑥𝑦 = 𝑒2𝑐 = 𝑐1 

It is the required general solution of (1). 

3. Solve  𝒚(𝟏 + 𝒙𝒚 )𝒅𝒙 + 𝒙(𝟏 − 𝒙𝒚)𝒅𝒚 = 𝟎. 

Solution: Given differential equation is  

𝑦(1 + 𝑥𝑦 )𝑑𝑥 + 𝑥(1 − 𝑥𝑦)𝑑𝑦 = 0               (1) 

This is of the form 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑦(1 + 𝑥𝑦)and 𝑁 = 𝑥(1 − 𝑥𝑦) 

Then
𝜕𝑀

𝜕𝑦
= 1 + 2𝑥𝑦   and  

𝜕𝑁

𝜕𝑥
= 1 − 2𝑥𝑦 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is of the form      0  21  dyyxfxdxyxfy  and  

   𝑀𝑥 − 𝑁𝑦 = 𝑦(1 + 𝑥𝑦)𝑥 − 𝑥(1 − 𝑥𝑦)𝑦 

= 2𝑥2𝑦2  ≠ 0 

∴     I. F. =
1

𝑀𝑥 − 𝑁𝑦
=

1

2𝑥2𝑦2
 

Multiplying (1) with 
1

2𝑥2𝑦2, we get 
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𝑦(1 + 𝑥𝑦)

2𝑥2𝑦2
 𝑑𝑥 +

𝑥(1 − 𝑥𝑦)

2𝑥2𝑦2
𝑑𝑦 = 0 

(
1

2𝑥2𝑦
+

1

2𝑥
) 𝑑𝑥 + (

1

2𝑥𝑦2
−

1

2𝑦
) 𝑑𝑦 = 0                (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 =
1

2𝑥2𝑦
+

1

2𝑥
and𝑁1 =

1

2𝑥𝑦2
−

1

2𝑦
 

Then
𝜕𝑀1

𝜕𝑦
= −

1

2𝑥2𝑦2
and

𝜕𝑁1

𝜕𝑥
= −

1

2𝑥2𝑦2
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫ (
1

2𝑥2𝑦
+

1

2𝑥
)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫ (−
1

2𝑦
) 𝑑𝑦 = 𝑐   

⇒
1

2𝑦
∫

1

𝑥2
 𝑑𝑥 +

1

2
∫

1

𝑥
 𝑑𝑥 −

1

2
∫

1

𝑦
𝑑𝑦 = 𝑐 

⇒
1

2𝑦
(−

1

𝑥
) +

1

2
𝑙𝑜𝑔 𝑥 −

1

2
𝑙𝑜𝑔 𝑦 = 𝑐   

⇒ −
1

2𝑥𝑦
+ 

1

2
log (

𝑥

𝑦
) = 𝑐      or

1

2
log (

𝑥

𝑦
) −

1

2𝑥𝑦
 = 𝑐 

It is the required general solution of (1). 

4. Solve 𝒚(𝒙𝒚 + 𝟐𝒙𝟐𝒚𝟐)𝒅𝒙 + 𝒙(𝒙𝒚 − 𝒙𝟐𝒚𝟐)𝒅𝒚 = 𝟎. 

Solution: Given differential equation is  

𝑦(𝑥𝑦 + 2𝑥2𝑦2)𝑑𝑥 + 𝑥(𝑥𝑦 − 𝑥2𝑦2)𝑑𝑦 = 0               (1) 

This is of the form 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑦(𝑥𝑦 + 2𝑥2𝑦2)and 𝑁 = 𝑥(𝑥𝑦 − 𝑥2𝑦2) 

Then
𝜕𝑀

𝜕𝑦
= 2𝑥𝑦 + 6𝑥2𝑦2and  

𝜕𝑁

𝜕𝑥
= 2𝑥𝑦 − 3𝑥2𝑦2 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is of the form      0  21  dyyxfxdxyxfy  and  

   𝑀𝑥 − 𝑁𝑦 = 𝑦(𝑥𝑦 + 2𝑥2𝑦2)𝑥 − 𝑥(𝑥𝑦 − 𝑥2𝑦2)𝑦 

= 3𝑥3𝑦3  ≠ 0 

∴     I. F. =
1

𝑀𝑥 − 𝑁𝑦
=

1

3𝑥3𝑦3
 

Multiplying (1) with 
1

3𝑥3𝑦3, we get 

𝑦(𝑥𝑦 + 2𝑥2𝑦2)

3𝑥3𝑦3
 𝑑𝑥 +

𝑥(𝑥𝑦 − 𝑥2𝑦2)

3𝑥3𝑦3
𝑑𝑦 = 0 
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(
1

3𝑥2𝑦
+

2

3

1

𝑥
) 𝑑𝑥 + (

1

3𝑥𝑦2
−

1

3𝑦
) 𝑑𝑦 = 0                (2) 

Again it is of the form  𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 =
1

3𝑥2𝑦
+

2

3

1

𝑥
and𝑁1 =

1

3𝑥𝑦2
−

1

3𝑦
 

Then
𝜕𝑀1

𝜕𝑦
= −

1

3𝑥2𝑦2
and

𝜕𝑁1

𝜕𝑥
= −

1

3𝑥2𝑦2
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫ (
1

3𝑥2𝑦
+

2

3

1

𝑥
)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫ (−
1

3𝑦
) 𝑑𝑦 = 𝑐   

⇒
1

3𝑦
∫

1

𝑥2
 𝑑𝑥 +

2

3
∫

1

𝑥
 𝑑𝑥 −

1

3
∫

1

𝑦
𝑑𝑦 = 𝑐 

⇒
1

3𝑦
(−

1

𝑥
) +

2

3
𝑙𝑜𝑔 𝑥 −

1

3
𝑙𝑜𝑔 𝑦 = 𝑐   

⇒ −
1

3𝑥𝑦
+ 

1

3
log (

𝑥2

𝑦
) = 𝑐      or

1

3
log (

𝑥2

𝑦
) −

1

3𝑥𝑦
 = 𝑐 

It is the required general solution of (1). 

Method 4: If there exists a continuous single valued function  xf  such that 

 xf
x

N

y

M

N

















1
, then 

  dxxf
e  is an integrating factor of 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0. 

1. Solve   2𝒙𝒚 𝒅𝒚 − (𝒙𝟐 + 𝒚𝟐 + 𝟏)𝒅𝒙 = 𝟎 . 

Solution: Given differential equation is  

2𝑥𝑦 𝑑𝑦 − (𝑥2 + 𝑦2 + 1)𝑑𝑥 = 0                  (1) 

This is of the form  𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = −𝑥2 − 𝑦2 − 1 and 𝑁 = 2𝑥𝑦  

Then
𝜕𝑀

𝜕𝑦
= −2𝑦   and   

𝜕𝑁

𝜕𝑥
= 2𝑦 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is a homogeneous differential equation and  

1

𝑁
(

𝜕𝑀

𝜕𝑦
−

𝜕𝑁

𝜕𝑥
) =

1

2𝑥𝑦
[−2𝑦 − 2𝑦] = −

2

𝑥
= 𝑓(𝑥) 

∴     I. F. = 𝑒∫ 𝑓(𝑥) 𝑑𝑥 = 𝑒∫(−
2

𝑥
)𝑑𝑥 = 𝑒−2 𝑙𝑜𝑔 𝑥 =

1

𝑥2
 

Multiplying (1) with  
1

𝑥2, we get 
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(
2𝑥𝑦

𝑥2
) 𝑑𝑦 − (

𝑥2 + 𝑦2 + 1

𝑥2
) 𝑑𝑥 = 0 

2𝑦

𝑥
𝑑𝑦 − (1 +

1

𝑥2
+

𝑦2

𝑥2
) 𝑑𝑥 = 0                       (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 = − (1 +
1

𝑥2
+

𝑦2

𝑥2
)    and    𝑁1 =

2𝑦

𝑥
 

Then
𝜕𝑀1

𝜕𝑦
= −

2𝑦

𝑥2
and  

𝜕𝑁1

𝜕𝑥
= −

2𝑦

𝑥2
 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
 

So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ − ∫ (1 +
1

𝑥2
+

𝑦2

𝑥2
)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫ (0) 𝑑𝑦 = 𝑐   

⇒ − (𝑥 −
1

𝑥
−

𝑦2

𝑥
) = 𝑐 

⇒  1 + 𝑦2 − 𝑥2 = 𝑐𝑥   

It is the required general solution of (1). 

2. Solve   (𝒙𝟐 + 𝒚𝟐 + 𝟐𝒙) 𝒅𝒙 + 𝟐𝒚 𝒅𝒚 = 𝟎 . 

Solution: Given differential equation is  

(𝑥2 + 𝑦2 + 2𝑥) 𝑑𝑥 + 2𝑦 𝑑𝑦 = 0                  (1) 

This is of the form  𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0, we have 

𝑀 = 𝑥2 + 𝑦2 + 2𝑥  and 𝑁 = 2𝑦  

Then
𝜕𝑀

𝜕𝑦
= 2𝑦   and   

𝜕𝑁

𝜕𝑥
= 0 

𝑖. 𝑒.,
𝜕𝑀

𝜕𝑦
≠  

𝜕𝑁

𝜕𝑥
 

So that (1) is not an exact differential equation. 

But (1) is a homogeneous differential equation and  

1

𝑁
(

𝜕𝑀

𝜕𝑦
−

𝜕𝑁

𝜕𝑥
) =

1

2𝑦
[2𝑦 − 0] = 1 = 𝑓(𝑥) 

∴     I. F. = 𝑒∫ 𝑓(𝑥) 𝑑𝑥 = 𝑒∫ 1.𝑑𝑥 = 𝑒𝑥  

Multiplying (1) with  𝑒𝑥 , we get 

𝑒𝑥(𝑥2 + 𝑦2 + 2𝑥) 𝑑𝑥 + 2𝑦𝑒𝑥  𝑑𝑦 = 0               (2) 

Again it is of the form 𝑀1 𝑑𝑥 + 𝑁1 𝑑𝑦 = 0, we have 

𝑀1 = 𝑒𝑥(𝑥2 + 𝑦2 + 2𝑥)   and    𝑁1 = 2𝑦𝑒𝑥  

Then
𝜕𝑀1

𝜕𝑦
= 2𝑦𝑒𝑥and  

𝜕𝑁1

𝜕𝑥
= 2𝑦𝑒𝑥 

𝑖. 𝑒.,
𝜕𝑀1

𝜕𝑦
=  

𝜕𝑁1

𝜕𝑥
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So that (2) is an exact differential equation. 

Therefore the general solution of (2) is 

∫ 𝑀1

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫(𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑁1 𝑛𝑜𝑡 𝑐𝑜𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑥) 𝑑𝑦 = 𝑐 

⇒ ∫ 𝑒𝑥(𝑥2 + 𝑦2 + 2𝑥)

𝑦=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 𝑑𝑥 + ∫ (0) 𝑑𝑦 = 𝑐   

⇒ ∫ 𝑒𝑥(𝑥2 + 2𝑥) 𝑑𝑥 + 𝑦2 ∫ 𝑒𝑥  𝑑𝑥 = 𝑐 

⇒  𝑒𝑥𝑥2 + 𝑒𝑥𝑦2 = 𝑐 ⇒ 𝑒𝑥(𝑥2 + 𝑦2) = 𝑐   

3. Solve   .022 23  xydydxyx  

Solution:  Given  equation is   022 23  xydydxyx  

Here 
23 2yxM    xyN 2  

We have y
y

M
4




  y

x

N
2




 


x

N

y

M









. Hence the equation is not exact 

But   xf
xxy

y

xy

yy

x

N

y

M

N


























 3

2

6

2

241
 

  3loglog3

3
3

.. 









xeeeeFI xx
dx

x
dxxf

 

Multiplying the equation with 
3

1

x
 we get 

 
0

22
33

23




dy
x

xy

x

dxyx
 

0
22

1
23

2









 dy

x

y
dx

x

y
.  It is an exact equation 

It solution is   cdydx
x

y

tconsy









 



0
2

1
tan

3

2

 

c
x

yx 





2
2

2
2


2

2

2

cx
x

y
x  , which is the required solution. 

Method 5: If there exists a continuous single valued function  yg  such that 

 yg
y

M

x

N

M

















1
, then 

  dyyg
e  is an integrating factor of 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 = 0. 

1. Solve     .0422 434  dyxyxydxyy  

Solution: Given equation is      0422 434  dyxyxydxyy   (1) 

Here xyxyNyyM 42;2 434    
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We have 4;24 33 








y

x

N
y

y

M
  

x

N

y

M









.  Hence it is not exact 

But 
 2

36

2

2441
3

3

4

33




























yy

y

yy

yy

y

M

x

N

M
  

 
 

 yg
yyy

y










3

2

23
3

3

 

I.F.
 

3

loglog3

1
3

3
13

y
eeeee yy

dy
y

dy
ydyyg













  

Equation (1) multiplied by I.F., we get 

   
0

422
3

43

3

4







dy
y

xyxy
dx

y

yy
 

 0
4

2
2

32


















 dy

y

x
yxdx

y
y                       (2) 

(2) is an exact differential equation. So its solution is 

cdyydx
y

y
tconsy









 



 2
2

tan

2
  

c
y

x
y

yx 
2

2
2 2

2
  

 cyx
y

y 







 2

2

2
 

this is the required solution. 

2. Solve   .02  dyxydxyy  

Solution: Given equation is    02  dyxydxyy  

Here 
2yyM    xyN   

We have   y
y

M
21




  y

x

N





 


x

N

y

M









.  Hence it is not exact 

But  
 

 yy

yy

yy

yy

y

M

x

N

M 


























1

21211
2

 

 
 
 

 yg
yyy

y

yy

y















1

1

1

1

1
 

 

y
yeeeeFI yy

dy
ydyyg 1

.. 1loglog

1
1
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Multiplying the equation with  
y

1
 we get 

 
0

2




dy
x

xy
dx

y

yy
              (2) 

It is an exact equation. So its solution is 

  cyxxcdydxy
tconsy

 


 .01
tan

 

which is the required solution. 

3. Solve     .023 2322222  dyyxyxyxdxxxy  

Solution: Given equation is     023 2322222  dyyxyxyxdxxxy  

Here 
22 xxyM    

2322 223 yxyxhyxN   

We have   xy
y

M
2




      2222 6266223 xxyxyxxyxy

x

N





 


x

N

y

M









.  Hence it is not exact 

But  
 
 

 yg
xyx

xyx

xxy

xyxxyxy

y

M

x

N

M




























6

626261
2

2

22

22

 

  ydydyyg

eeeFI 66

..   

Multiplying the equation with  
ye6
 we get 

    023 232226226  dyyxyxyxedxxxye yy
           (2) 

It is an exact equation, its solution is 

  cdyyexexye y

tconsy

yy  


26

tan

2626 6  

c
eyeeyx

e
x

ye
yyy

yy 









216

2

36

2

632

66623
6

2
26

, using integration by parts 

c
eyeyex

e
yx

e
yyy

yy 
10818632

6663
6

22
6

 

c
yyxyx

e y 









108

1

18632

2322
6

, which is required the solution. 
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Newton’s law of Cooling 

Statement: The rate of change of temperature of a body is proportional to the difference of the 

temperature of the body and its surrounding medium. 

 Let 𝜃 be the temperature of the body at time 𝑡 and 𝜃0 be the temperature of its surrounding 

medium (usually air). By the Newton’ law of cooling, we have 

𝑑𝜃

𝑑𝑡
 𝛼 𝜃 − 𝜃0or

𝑑𝜃

𝑑𝑡
= −𝑘 (𝜃 − 𝜃0), where 𝑘 is a positive constant 

Examples 

1. A body is originally at 80
0
C and cools down to 60

0
C in 20 minutes. If the temperature of the 

air is 40
0
C, find the temperature of the body after 40 minutes. 

Solution: Let  be the temperature of the body at time t . 

By Newton’s law of cooling, we have 

 0


 k
dt

d
, where 0 is the temperature of the air 

   given be 40 since  ,40 0  


k
dt

d
 

dtk
d

 
40

or    



(variables separable)   (1) 

Integrating on both sides, we get 

 


dtk
d

 
40


 

  ckt log40log   , c  is an integrating constant 

kt
c








 


40
log

 kte
c





40

 

ktce 40 ktce 40    (2) 

Given that when 
00 60 ,20 when and 80 ,0   tt  

Substituting this in (2), we get 40c and 
kce 204060   

  2  
2

1
   4020 202020   kkk eee  

2log
20

1
  2log20  kk  

 (2) becomes
t

e











2log

20

1

4040      (3) 

When  ,30t ?  

402log
20

1

4040(3)










 e , from (3) 










  4

1
log

2log2 40404040 ee  

C50
4

1
4040 0
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2. If  the temperature of a body is changing from 100
0
C to 70

0
C in 15 minutes, find the time 

when the temperature will be 50
0
C, if the temperature of the air is 30

0
C. 

Solution: Let  be the temperature of the body at time t . 

By Newton’s law of cooling, we have 

 0


 k
dt

d
, where 0 is the temperature of the air 

   given be 30 since  ,30 0  


k
dt

d
 

dtk
d

 
30

or    



(variables separable)   (1) 

Integrating on both sides, we get 

 


dtk
d

 
30


 

  ckt log30log   , c  is an integrating constant 

kt
c








 


30
log

 kte
c





30

 

ktce 30 ktce 30    (2) 

Given that when 
00 70 ,15 when and 100 ,0   tt  

Substituting this in (2), we get 70c and 
kce 153070   

4

7
  

7

4
   7040 151515   kkk eee  




















4

7
log

15

1
  

4

7
log15 kk  

 (2) becomes
t

e



















4

7
log

15

1

7030      (3) 

When  ,400 ?t  

t

e



















4

7
log

15

1

703040)3(  

tt

ee




































4

7
log

15

1

4

7
log

15

1

7

1
7010  

te
t




































4

7
log

15

1
7log  7

4

7
log

15

1

 

48.315

4

7
log

7log
15 









 t  

16.52 t Minutes 

 

3. If the air is maintained at   and the temperature of the body drops from  to  in 

10 minutes. What will be its temperature after 30 minutes. 

Solution:Let  be the temperature of the body at time t . 

By Newton’s law of cooling, we have 
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 0


 k
dt

d
, where 0 is the temperature of the air 

dtk
d

 or    
0





(variables separable) 

Integrating on both sides, we get 

 


dtk
d

 
0


 

  ckt loglog 0   , c  is an integrating constant 

kt
c








 
 0log

 kte
c




 0
 

ktce 0 ktce 0    (1) 

Given C150

0   so that (1) becomes 

ktce15      (2) 

Given that when 
00 40 ,10 when and 70 ,0   tt  

Substituting this in (2), we get 55c and 
ke 20551540   

    
55

25
   5525 1010   kk ee      (3) 

When  ,30t ?  

 (2) 
ke 305515   

 
3

310

55

25
55155515 








  ke  

C201653.20 0  

4. A body kept in air with temperature 25
0
 C cools from 140

0
C to 80

0
C in 20 minutes, find the 

time when the body cools down to  35
0
C. 

Solution: Let  be the temperature of the body at time t . 

By Newton’s law of cooling, we have 

 0


 k
dt

d
, where 0 is the temperature of the air 

   given be 25 since  ,25 0  


k
dt

d
 

dtk
d

 
25

or    



(variables separable)   (1) 

Integrating on both sides, we get 

 


dtk
d

 
25


 

  ckt log25log   , c  is an integrating constant 

kt
c








 


25
log

 kte
c





25

 

ktce 25 ktce 25    (2) 
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Given that when 
00 80 ,20 when and 140 ,0   tt  

Substituting this in (2), we get 115c and 
kce 202580   

55

115
  

115

55
   11555 202020   kkk eee  




















55

115
log

20

1
  

55

115
log20 kk  

 (2) becomes
t

e



















55

115
log

20

1

11525      (3) 

When  ,C350 ?t  

t

e



















55

115
log

20

1

1152535)3(  

tt

ee




































55

115
log

20

1

55

115
log

20

1

115

10
11510  

te
t













































55

115
log

20

1

10

115
log  

10

115 55

115
log

20

1

 

31.320

55

115
log

10

115
log

20 



















 t  

2.66 t Minutes 

Law of Natural Growth or Decay 

 Let  tx be the amount of a substance at time t and let the substance be getting converted 

chemically. A law of chemical conversion states that the rate of change of amount  tx  of a 

chemically changing substance is proportional to the amount of the substance available at that time, 

i.e., x
dt

dx
  . 

 If as t increases, x increases, we can take  0   kkx
dt

dx
 and if x decreases as t increases 

we can take  0   kkx
dt

dx
. 

 

Examples 

1. The number 𝑁 of bacteria in culture grew at a rate proportional to 𝑁. The value of N was 

initially 100 and increased to 332 in one hour. What was the value of 𝑁 after 𝟏
𝟏

𝟐
hours. 

Solution: According to law of natural growth, we have 

𝑑𝑁

𝑑𝑡
 𝛼 𝑁     𝑖. 𝑒.,

𝑑𝑁

𝑑𝑡
= 𝑘𝑁             (1) 

Separating the variables, we get
𝑑𝑁

𝑁
= 𝑘 𝑑𝑡 
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Integrating, log 𝑁 = 𝑘𝑡 + log 𝑐 ⇒
𝑁

𝑐
= 𝑒𝑘𝑡 ⇒ 𝑁 = 𝑐𝑒𝑘𝑡        (2) 

When 𝑡 = 0, we have 𝑁 = 100 so that 𝑐 = 100 

∴ (2) ⇒    𝑁 = 100𝑒𝑘𝑡                                  (3) 

When 𝑡 = 1 hour,  𝑁 = 332  so that  from (3), we have                   

332 = 100𝑒𝑘                                 (4) 

When 𝑡 = 1
1

2
hours =

3

2
 hours,  𝑁 = 100𝑒3𝑘/2 

                             ⇒  𝑁 = 100(𝑒𝑘)
3/2

= 100 (
332

100
)

3/2

, from (4) 

∴   𝑁 = 604.5 = 605 

2. In a certain chemical reaction the rate of conversion of a substance at time t is proportional to 

the quantity of the substance still untransformed at that instant. At the end of one hour 60 

grams remain and at the end of four hours 21 grams. How many grams of the first substance 

was there initially? 

Solution: According to law of natural decay, we have 

𝑑𝑦

𝑑𝑡
 𝛼 𝑦     𝑖. 𝑒.,

𝑑𝑦

𝑑𝑡
= −𝑘𝑦             (1) 

Separating the variables, we get
𝑑𝑦

𝑦
= −𝑘 𝑑𝑡 

Integrating, log 𝑦 = −𝑘𝑡 + log 𝑐 ⇒
𝑦

𝑐
= 𝑒−𝑘𝑡 ⇒ 𝑦 = 𝑐𝑒−𝑘𝑡        (2) 

Let 𝑦 = 𝑦0at 𝑡 = 0, then 𝑦 = 𝑦0𝑒−𝑘𝑡                (3) 

When 𝑡 = 1 hour, 𝑦 = 60 grams 

∴ (3) ⇒    60 = 𝑦0𝑒−𝑘 𝑜𝑟 𝑒−𝑘 = 60/𝑦0(4) 

When 𝑡 = 4 hours,  𝑦 = 21 grams, so that  from (3), we have                   

21 = 𝑦0𝑒−4𝑘                                  (5) 

Using (4) in (5), we get 

                  21 = 𝑦0(60/𝑦0)4 ⇒ 𝑦0
3 =

604

21
 

                  ∴ 𝑦0 = (
604

21
)

1/3

= 85.13 grams 

3. In a chemical reaction a given substance is being converted into another at a rate 

proportional to the amount of substance unconverted. If 

th










5

1
of the original amount has been 

transformed in 4 minutes, how much time will be required to transform one half. 

Solution: Let x grams be the amount of the remaining substance after ‘ t ’ minutes. 

  The differential equation is 
ktcexkkx

dt

dx  0,  (1) 

Let the original amount of substance be ‘ m ’ grams. 
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Given when mcmxt  (1)   ,,0  

andwhen 
5

4

5
,4

mm
mxt   

5

4
     

5

4
(1) 44   kk eme

m
 

 4log5log
4

1
          

5

4
log4 








 kk   (2) 

We have to find t when 
2

m
x   

2log     
2

(1)   ktme
m kt

 

minutes 1342.12
4log5log

2log 4
t             2log

1





k
t  

4. A bacterial culture, growing exponentially, increases from 200 to 500 grams in the period 

from 6 a.m. to 9 a.m. how many grams will be present at noon. 

Solution: Let N be the number of bacteria in a culture at any time 0t . 

Then according law of natural growth 
ktceN    (1) 

Where c is a constant and k , the rate constant. 

Given that 200N grams when 0t  

200)1(  c  

Thus we have 
ktceN 200     (2) 

But when 3t  hours (from 6 a.m. to 9 a.m.), 500N grams 

Using these in (2) we get 

5.2
2

5
    200500 33  kk ece  

    3054.052log
3

1
  5.2log3  .kk  

Hence the number of bacteria in the culture at any instant of time 0t is given by 

 tceN 3054.0200 . 

To know N when 6t hours  (from 6 a.m. to 12 noon) 

  8.1249200 63054.0  ceN grams 
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ELECTRICAL CIRCUITS 

We will consider circuits made up of 

(i) voltage source which may be a battery or a generator 

(ii) Resistance, Inductance and Capacitance 

The formation of differential equation for an electric circuit depends upon the following laws. 

Let i be the current and q the charge in the condenser plate at any time t . Then  

(i) dtiq
dt

dq
i  or        

(ii) Voltage drop across resistance 
dt

dq
RRiR   

(iii) Voltage drop across inductance 
2

2

dt

qd
L

dt

di
LL   

(iv) Voltage drop across capacitance 
C

q
C   

Kirchoff’s law: 

1. Voltage law: The algebraic sum of the voltage drops in each part of any closed electrical circuit is 

equal to the resultant electromotive force (e.m.f.) in that circuit. 

2. Current law: At a junction or node, current coming is equal to current going. 

Examples 

1. If a voltage of t5cos20 is applied to a series circuit consisting of 10 ohm resistor and 2 henry 

inductor, determine the current at any time t . 

Solution: Let i be the current flowing in the circuit containing resistance R and inductance L in 

series, with voltage source E at any time t . 

Given henry 2 ohm, 10 ,5cos20  LRtE  

By voltage law, we have 

Ei
L

R

dt

di
ERi

dt

di
L         

ti
dt

di
5cos20

2

10
  

ti
dt

di
5cos205     (1) 

This is a linear differential equation is of the form QPi
dt

di
 , where tQP 5cos20,5   

Now 
tdtdtP

eeeFI 55

..   

The general solution of (1) is 

    cdtQi   I.F.I.F.   

cdtetei tt  
55 5cos20   

  ctt
e t




 5sin55cos5
2525

20
5

 

  ctte t  5sin5cos2 5
 

  tcetti 55sin5cos2      (2) 
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At 0t , 2200  cci  

Thus (2) becomes,   tetti 525sin5cos2   

2. A circuit has in series on electromotive force given by  tE 40sin100 V a resistor of 10Ω 

and an inductor of 0.5H. if the initial current is 0, find the current at time 0t . 

Solution: Let i denote the current in amperes at time t  

The total electric magnetic force if  tE 40sin100  

Then by the laws of electric circuits, we have  

the voltage drop across the resistor iRi 10  

 voltage drop across the inductor
dt

di

dt

di
L

2

1
  

Applying Kirchoff’s law, we have  

 ti
dt

di
40sin10010

2

1
  

 ti
dt

di
40sin20020     (1) 

This is a linear differential equation is of the form QPi
dt

di
 , where  tQP 40sin200,20   

Now 
tdtdtP

eeeFI 2020

..   

The general solution of (1) is 

    cdtQi   I.F.I.F.   

  cdtetei tt  
2020 40sin200  

  ctt
e t




 40cos4040sin20
4020

200
22

20

 

  ctte t  40cos240sin2 20
 

  tcetti 2040cos240sin2    (2) 

At 0t , 4400  cci  

Thus (2) becomes,   tetti 20440cos240sin2   
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Unit-II 

LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER 

Linear Differential Equation with constant coefficients: 

Definition: An equation of the form  xQya
dx

dy
a

dx

yd
a

dx

yd
a

dx

yd
nnn

n

n

n

n

n

 







12

2

21

1

1 ...  

Where naaa ,...,, 21 are real constants and  xQ is a continuous function of x is called an ordinary 

linear equation of order n with constant coefficients. We now state a theorem without proof. 

Theorem: If 
21  and yy are two solutions of the equation 

 xQya
dx

dy
a

dx

yd
a

dx

yd
a

dx

yd
nnn

n

n

n

n

n

 







12

2

21

1

1 ...   (1) 

then
2211 ycycy  is also its solution, where 

21  and cc are constants. 

 The general solution of a
thn order contains n arbitrary constants. If nyyy ,...,, 21 are n

independent solutions of (1) then nn ycycycy 12211 ... is the most general solution of (1). Let 

us denote this with u . 

 If vy   is any particular solution of (1) then vuy   is the most general solution of (1). 

The part ‘u ’ is called the “Complementary Function” (C.F.) and the part ‘ v ’ is called the “Particular 

Integral” (P.I.) of (1). The complete solution of (1) is given by 

.... IPFCy   

Operator D : 

 Let us denote 
n

n

dx

d

dx

d

dx

d

dx

d
,....,,,

3

3

2

2

with 
nDDDD ,...,,, 32

so that 

n

n
n

dx

yd
yD

dx

yd
yD

dx

yd
yD

dx

dy
Dy   ,..., , ,

3

3
3

2

2
2

 

Now equation (1) can be written in symbolic form as 

   xQyaDaDaDaD nn

nnn  



1

2

2

1

1 ...  

   xQyDfei    .,.  

Where   nn

nnn aDaDaDaDDf  



1

2

2

1

1 ...  is a polynomial in D . The symbol 

D  stands for the operation of differentiation. 

To find the General solution (Complementary Function) of   0yDf  

 The algebraic equation   0ymf , 0... 1

2

2

1

1  



nn

nnn amamamam  where 

naaa ,...,, 21  are real constants, is called the auxiliary equation (A.E.) of   0yDf . Since the A.E., 

  0mf is a polynomial equation of degree n , it will have n  roots, say nmmm ,...,, 21 . 

S.No. Roots of A.E. 

  0mf  

C.F. (Complementary Function) 

1 
nmmm ,...,, 21 , i.e., all 

roots are real and 

distinct 

xm

n

xmxm nececec  ...21

21  

2 
nmmmm ,...,,, 311 (i.e.,   xm

n

xmxm nececexcc  ...31

321  
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two roots are real and 
equal and remaining are 

all real and different) 

3 
nmmmmm ,...,,,, 4111  

(i.e., three roots are real 

and equal and 
remaining are all real 

and different) 

  xm

n

xmxm nececexcxcc  ...41

4

2

321  

4 Two roots of A.E. are 

complex say   i

 i and  and the 

remaining roots are real 
and different. 

  xm

n

xmx nececxcxce  ... sin cos 3

321

 
 

5 A pair of conjugate 

complex roots   i

are repeated twice and 

the remaining roots are 

real and different. 

     xm

n

xmx nececxxccxxcce  ... sin cos 5

54321

 
 

6 A pair of conjugate 

complex roots   i

are repeated thrice and 
the remaining roots are 

real and different. 

    xxcxccxxcxcce x  sin cos 2

654

2

321

    

xm

n

xm necec  ...7

7  

 

Note: If    is a real irrational root of    0mf ,    is also a root of the equation. The 

part of the complementary function corresponding to these roots can also be put in the form 

 xcxce x  sinh cosh 21

    

Examples 

1. Solve 0 ,02

2

2

 aya
dx

yd
. 

Solution: Given Differential equation is 02

2

2

 ya
dx

yd
  (1) 

Its operator form is   022  yaD  

  0.,. yDfei , where   22 aDDf   

Now the auxiliary equation of (1) is   0mf  

amam      022
 

 The roots are real and different 

   The general solution of (1) is 
axax ececy  21  

where 21  and cc are arbitrary constants. 

2. Solve  05.05.1
2

2

 y
dx

dy

dx

yd
. 
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Solution: Given Differential equation is 05.05.1
2

2

 y
dx

dy

dx

yd
 (1) 

Its operator form is   05.05.12  yDD  

  0.,. yDfei , where   5.05.12  DDDf  

Now the auxiliary equation of (1) is   0mf  

 05.05.12  mm  

 0132     2  mm  

    0121      mm  

 
2

1
,1      m  

 The roots are real and different 

   The general solution of (1) is  

2
21

x

x ececy


  , where 21  and cc are arbitrary constants. 

3. Solve  015239
2

2

3

3

 y
dx

dy

dx

yd

dx

yd
. 

Solution: Given Differential equation is 015239
2

2

3

3

 y
dx

dy

dx

yd

dx

yd
 (1) 

Its operator form is   015239 23  yDDD  

  0.,. yDfei , where   15239 23  DDDDf  

Now the auxiliary equation of (1) is   0mf  

 015239 23  mmm  

     0531      mmm  

 5 ,3 ,1      m  

 The roots are real and different 

   The general solution of (1) is  
xxx ecececy 5

3

3

21   , where 321  and  , ccc are arbitrary constants. 

4. Solve  032
2

2

3

3


dt

dx

dt

xd

dt

xd
. 

Solution: Given Differential equation is 032
2

2

3

3


dt

dx

dt

xd

dt

xd
  (1) 

Its operator form is   032 23  xDDD  

  0.,. yDfei , where   DDDDf 32 23   

Now the auxiliary equation of (1) is   0mf  

 032 23  mmm  

    013      mmm  

 1 ,3 ,0      m  

 The roots are real and different 



Dr.K.V.Nageswara Reddy, AITS(Autonomous) Page 4 
 

   The general solution of (1) is  
tt ececcx  3

3

21  , where 321  and  , ccc are arbitrary constants. 

5. Solve  023
3

3

 y
dx

dy

dx

yd
. 

Solution: Given Differential equation is 023
3

3

 y
dx

dy

dx

yd
  (1) 

Its operator form is   0233  yDD  

  0.,. yDfei , where   233  DDDf  

Now the auxiliary equation of (1) is   0mf  

 0233  mm  

    021     2  mmm  

     0211      mmm  

 2 ,1 ,1      m  

 Sine two roots of   0mf are equal 

   The general solution of (1) is  

  xx ecexccy 2

321

  , where 321  and  , ccc are arbitrary constants. 

6. Solve    04432 234  yDDDD . 

Solution: Given Differential equation is   04432 234  yDDDD   (1) 

  0.,. yDfei , where   4432 234  DDDDDf  

Now the auxiliary equation of (1) is   0mf  

 04432 234  mmmm  

    0431     23  mmm  

     04411     2  mmmm  

      02211      mmmm  

2 , 2 ,1 ,1      m  

   The general solution of (1) is  

    xx exccexccy 2

4321  
 , where 4321  and  , , cccc are arbitrary constants. 

7. Solve  0
2

2

 y
dx

dy

dx

yd
. 

Solution: Given Differential equation is 0
2

2

 y
dx

dy

dx

yd
 (1) 

Its operator form is   012  yDD  

  0.,. yDfei , where   12  DDDf  

Now the auxiliary equation of (1) is   0mf  

 012  mm  
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2

3

2

1

2

31
 

2

411
     i

i
m 








  

 The roots are complex. 

   The general solution of (1) is  


















2

 3
sin

2

 3
cos 21

2
x

c
x

cey

x

 , where 
21  and cc are arbitrary constants. 

8. Solve   0168 24  yDD . 

Solution: Given Differential equation is   0168 24  yDD   (1) 

  0.,. yDfei , where   168 24  DDDf  

Now the auxiliary equation of (1) is   0mf  

 0168 24  mm  

   04     
22  m  

     022     
22
 imim  

iiiim 2 , 2 ,2 ,2       

   The general solution of (1) is  

    xxccxxccy 2sin2cos 4321   

where 4321  and  , , cccc are arbitrary constants. 

9. Solve   08143  yDD . 

Solution: Given Differential equation is   08143  yDD   (1) 

  0.,. yDfei , where   8143  DDDf  

Now the auxiliary equation of (1) is   0mf  

 08143  mm  

    0244     2  mmm  

22 and 4      mm  

   The general solution of (1) is  

 xcxceecy xx  2sinh 2cosh 32

24

1  
 

where 321  and  , ccc are arbitrary constants. 

10. Solve     140 ,40 ,096 ''''  yyyyy . 

Solution: Solution: Given Differential equation is 096 '''  yyy  (1) 

Its operator form is   0962  yDD  

  0.,. yDfei , where   962  DDDf  

Now the auxiliary equation of (1) is   0mf  

 0962  mm  

   03
2
 m  

3 ,3      m  
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   The general solution of (1) is  

  xexccy 3

21

      (2) 

where
21  and cc are arbitrary constants. 

 Differentiating (2) with respect to ‘ x ’, we get 

   xx ecexccy 3

2

3

21

' 3      (3) 

Given   40 y , then from (2), we have 41 c   (4) 

and   140' y , then from (3), we have 
21314 cc   

21214314 12  cc   (5) 

Using (4) and (5) in (2), we get the required solution of (1) is 

    xx exexy 33 4224    

11. Solve     10 ,40 ,02 ''''  yyyyy . 

Solution: Solution: Given Differential equation is 02'''  yyy  (1) 

Its operator form is   022  yDD  

  0.,. yDfei , where   22  DDDf  

Now the auxiliary equation of (1) is   0mf  

 022  mm  

    021  mm  

2 ,1      m  

   The general solution of (1) is  
xx ececy 2

21

      (2) 

where 21  and cc are arbitrary constants. 

 Differentiating (2) with respect to ‘ x ’, we get 
xx ececy 2

21

' 2       (3) 

Given   40 y , then from (2), we have   421  cc   (4) 

and   10' y , then from (3), we have 12 21  cc   (5) 

solve (4) and (5), we get 1 ,3 21  cc   

Using these values in (2), we get the required solution of (1) is 
xx eey 23   

12. Solve  (𝑫𝟑 − 𝟏)𝒚 = 𝟎. 

Solution: Given differential equation is 

(𝐷3 − 1)𝑦 = 0     𝑖. 𝑒. , [𝑓(𝐷)]𝑦 = 0            (1) 

Where 𝑓(𝐷) = 𝐷3 − 1 

Now the auxiliary equation of the given D.E. is 

𝑓(𝐷) = 0             𝑖. 𝑒., 𝐷3 − 1 = 0 

(𝐷 − 1)(𝐷2 + 𝐷 + 1) = 0 

𝑖. 𝑒., 𝐷 − 1 = 0 and𝐷2 + 𝐷 + 1 = 0 

            𝐷 = 1 and 𝐷 =
−1 ± √1 − 4

2
=

−1 ± 𝑖√3

2
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Therefore the general solution of (1) is 

            𝑦 = 𝑐1𝑒𝑥 + 𝑒−𝑥/2 (𝑐2 𝑐𝑜𝑠 
√3

2
𝑥 + 𝑐3 𝑠𝑖𝑛 

√3

2
𝑥) 

13. Roots of the auxiliary equation for  (𝑳𝑫𝟐 + 𝑹𝑫 +
𝟏

𝒄
) 𝒒 = 𝑬 𝒔𝒊𝒏 𝒑𝒕. 

Solution: Given differential equation is  

(𝐿𝐷2 + 𝑅𝐷 +
1

𝑐
) 𝑞 = 𝐸 𝑠𝑖𝑛 𝑝𝑡    𝑖. 𝑒. ,   [𝑓(𝐷)]𝑞 = 𝐸 𝑠𝑖𝑛 𝑝𝑡            (1) 

                where   𝑓(𝐷) = 𝐿𝐷2 + 𝑅𝐷 +
1

𝑐
 

Now the auxiliary equation is 

𝑓(𝐷) = 0 

                      𝐿𝐷2 + 𝑅𝐷 +
1

𝑐
= 0 

                 ∴ The roots are   𝐷 =
−𝑅 ± √𝑅2 −

4𝐿

𝑐

2𝐿
 

Inverse operator: 

 The operator 
D

D
1

or  1
is called inverse of the differential operator D . 

Definition: If Q is any function of x then Q
D

QD
1

or  1
is called the integral of Q . 

We write QDQ
D

 
1

 

Ex:
3

3sin
 3cos3cos

1 x
dxxx

D
   , Since x

x
D 3cos

3

3sin









 

Definition: If  Df is differential operator defined earlier. Let  xQ  be any function of x ,  

then we write  
 

          xQxDfxxQ
Df

  or  
1

  

Ex:
3023

1 4
4

2

x
x e

e
DD




 

Since   x
xxxx

e
eeee

DD 4
4444

2

30

2

30

12

30

16

30
23   

Ex: xx
D

3sin3cos
2

1



 is incorrect, Since    xxxD 3sin23cos33sin2   

Theorem:If  xQ  is any function of x  and  is a constant, then the particular value of 

 xQ
D 

1
 is equal to   dxexQe xx  

  . 

    dxexQexQ
D

ei xx 








 
1

 of P.I.  .,.  

    dxexQexQ
D

xx 


 

1
 of P.I.  Also 
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Reason: Let      xQyDyxQ
D







1
 

It is a first order linear differential equation, so its particular solution is given by 

    dxexQeydxexQye xxxx  

   or    

Definition: If 
  DD

1
,

1
are two inverse operators, then we define 

  
 

 
 













xQ

DD
xQ

DD 

111
 

where  ,  are constants and Q  is a function of x . 

  
 

 
      dxedxexQeedxexQe

D
xQ

DD
ei xxxxxx 





  





  
11

  .,.  

Examples 

1. Find 
21

x
D

. 

Solution: Now
3

1 3
22 x
dxxx

D
   

2. Find x
D

cos
1

3
. 

Solution: Now    x
D

dxx
D

x
DD

x
D

sin
1

 cos
1

cos
11

cos
1

2223









   

 

   x
D

dxx
D

x
DD

cos
1

 sin
1

sin
11









   

xdxx sin cos    

3. Find the particular value of x
D 1

1


. 

Solution: Now   1
1

1






 xexeedxxeex
D

xxxxx
 

4. Find the particular value of 
  

xe
DD

2

32

1


. 

Solution: Now
     














xx e
DD

e
DD

22

3

1

2

1

32

1
 

Since   xxxxxxx eeedxeeee
D

233232

3

1






  


 

  xxxxxxx xedxedxeeee
D

e
DD

2222222

2

1

3

1

2

1
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Note: The above method to find particular integral (P.I.) is a general method and it will be more 

useful when  xQ  is of the form axaxaxax  cosec ,sec ,cot ,tan . 

General solution of    xQyDf  : 

 We know that if pyy  is a particular solution of    xQyDf  containing no arbitrary 

constants and cyy   is the general solution of   0yDf then pc yyy   is the general solution 

of    xQyDf  . 

 We have previously discussed the methods to find the general solution of   0yDf . 

 Now we will discuss methods to find P.I. of    xQyDf  . 

Particular Integral of    xQyDf  : 

Given equation is    xQyDf    (1) 

Operating (1) by 
 Df

1
, we get

 
  

 
 xQ

Df
yDf

Df

11
  

 
 xQ

Df
y

1
  

Clearly (1) is satisfied, if we take 
 

 xQ
Df

y
1

  

Thus particular integral 
 

 xQ
Df

1
P.I.   

Note 1: To find the P.I. of    xQyDf  , we find the value of 
 

 xQ
Df

1
. 

Note 2: P.I. of    xQyDf   contains no arbitrary constants. 

Note 3: P.I. of    xQyDf   when 
 Df

1
is expressed as partial fractions. 

Let       nDDDDf   ...21 , then 

P.I.
 

 
    

 xQ
DDD

xQ
Df n 


...

11

21

 

 xQ
D

A

D

A

D

A

n

n





















1

2

2

1

1 ... , resolving into partial fractions 

      dxexQeAdxexQeAdxexQeA
xx

n

xxxx nn  

  ...2211

21  

Examples 

1. Solve   xxeyDD 42 65  . 

Solution: Given differential equation is   xxeyDD 42 65    

   xQyDfei .,.   (1)  

where   652  DDDf  and   xxexQ 4  

Now the auxiliary equation of (1) is   0mf  

 0652  mm  
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    032  mm  

3 ,2      m  

 
xx

c ececFCy 3

2

2

1..         (2) 

Now 
 

  x

p xe
DD

xQ
Df

IPy 4

2 65

11
..


  

  
xx xe

DD
xe

DD

44

2

1

3

1

32

1
















 , using partial fractions 

xx xe
D

xe
D

44

2

1

3

1





  


  dxexeedxexee xxxxxx 242343

 

  dxxeedxxee xxxx 223
 

  









42

22
23

xx
xxxx ee

xeexee , integration by parts 

4

324 


x
e x

 

  The general solution (1) is  

 32
4

1
    43

2

2

1  xeececyyy xxx

pc  

2.Solve   axyaD sec22  . 

Solution: Given differential equation is   axyaD sec22    

   xQyDfei .,.   (1)  

where   22 aDDf   and   axxQ sec  

Now the auxiliary equation of (1) is   0mf  

 022  am  

 iam   

 axcaxcFCyc sincos..    21     (2) 

Now 
 

  ax
aD

xQ
Df

IPyp sec
11

..
22 

  

  
ax

iaDiaD
sec

1


 ax

iaDiaDai
sec

11

2

1













 , using partial fractions 














 ax

iaD
ax

iaDai
sec

1
sec

1

2

1
   (3) 

Now 





 dx
ax

axiax
edxeaxeax

iaD

iaxiaxiax

cos

sincos
 secsec

1
 

  







  ax

a

i
xedxaxie iaxiax coslogtan1   (4) 
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Similarly, 











 ax
a

i
xeax

iaD

iax coslogsec
1

   (5) 

Using (4) and (5) in (3), we get 


























  ax

a

i
xeax

a

i
xe

ai
y iaxiax

p coslogcoslog
2

1
  

ax
ee

ai

ee

a

x iaxiaxiaxiax

coslog
2

1

2
 

2 






 







 




 

 axax
a

ax
a

x
coslogcos

1
sin

2
     (6) 

  The general solution (1) is  

 axax
a

ax
a

x
axcaxcyyy pc coslogcos

1
sinsincos    

221   

3.Solve   axyaD tan22  . 

Solution: Given differential equation is   axyaD tan22    

   xQyDfei .,.   (1)  

where   22 aDDf   and   axxQ tan  

Now the auxiliary equation of (1) is   0mf  

 022  am  

 iam   

 axcaxcFCyc sincos..    21     (2) 

Now 
 

  ax
aD

xQ
Df

IPyp tan
11

..
22 

  

  
ax

iaDiaD
tan

1


 ax

iaDiaDai
tan

11

2

1













 , using partial fractions 














 ax

iaD
ax

iaDai
tan

1
tan

1

2

1
   (3) 

Now   


 dx
ax

ax
axiaxedxeaxeax

iaD

iaxiaxiax  
cos

sin
sincos tantan

1
 

 






 
 dx

ax

ax
iaxeiax

cos

cos1
sin

2

 

 






 
 dx

ax

ax
iaxeiax

cos

cos1
sin

2

 

   dxaxidxaxidxaxeiax  cos secsin  

  







 ax

a

i
axax

a

i

a

ax
eiax sintanseclog

cos
 

    axaxiaxiax
a

eiax

tanseclogsincos   
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  axaxie
a

e iax
iax

tanseclog  
 

 axaxe
a

i

a

iax tanseclog
1

    (4) 

Replace i  by i  in (3), we get 

 axaxe
a

i

a
ax

iaD

iax tanseclog
1

tan
1





   (5) 

Using (4) and (5) in (3), we get 

   

























  axaxe

a

i

a
axaxe

a

i

aai
y iaxiax

p tanseclog
1

tanseclog
1

2

1
  

 axax
ee

a

iaxiax

tanseclog
2

 
1

2








 




 

 axaxax
a

tanseclog cos 
1

2
     (6) 

  The general solution (1) is  

 axaxax
a

axcaxcyyy pc tanseclog cos 
1

sincos    
221   

4. Solve   xeeyDD  342
. 

Solution: Given differential equation is   xeeyDD  342
  

   xQyDfei .,.   (1)  

where   342  DDDf  and  
xeexQ   

Now the auxiliary equation of (1) is   0mf  

 0342  mm  

    031  mm  

3 ,1      m  

 
xx

c ececFCy 3

21..          (2) 

Now 
 

  x

p xe
DD

xQ
Df

IPy 4

2 34

11
..


  

  
xx ee e

DD
e

DD 

















3

1

1

1

2

1

31

1
, using partial fractions 
















xx ee e
D

e
D 3

1

1

1

2

1
    (3) 

Now  dtdxetedteedxeeee
D

xxtxxexe xx


 

 Put  ,
1

1
 

xextx eeee        (4) 

and  dtdxetedtetedxeeee
D

xxtxxexe xx


 

 Put  ,
3

1 2333
 

   2222 2323   xxextx eeeettee
x

  (5) 
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Using (4) and (5) in (3), we get 

 xxxxe

p eeeeey
x 32 22

2

1    

 xxe eee
x 32         (6) 

  The general solution (1) is  

 xxexx

pc eeeececyyy
x 323

21       

RULES FOR FINDING PARTICULAR INTEGRAL IN SOME SPECIAL CASES 

Method 1: P.I. of    xQyDf  when   axexQ  , where ‘ a ’ is constant. 

Case I:Let   axeyDf  , then 

   
  0 if ,

1
 af

af

e
e

Df
y

ax
ax

p  

Case II: If   0af , then  aD  is a factor of  Df . If ‘a ’ is a root repeated k times for 

  0af , then      DaDDf
k
  where   0a , then we have 

            !

1111

k

x
e

aaD

e

a
e

DaD
e

Df

k
ax

k

ax
ax

k

ax








  

Hence 
   

    0 and 0 if ,
!

1
 aaf

k

x

a

e
e

Df
y

kax
ax

p 


 

Note: In order to find the P.I. of axax coshor  sinh express them as 
2

axax ee 
 and 

2

axax ee 
 

respectively. 

Examples 

1. Solve 
xey

dx

dy

dx

yd 2

2

2

34  . 

Solution: Given differential equation is 

xey
dx

dy

dx

yd 2

2

2

34   

    xeyDDei 22 34.,.    

   xQyDfei .,.   (1)  

where   342  DDDf  and   xexQ 2  

Now the auxiliary equation of (1) is   0mf  

 0342  mm  

    031  mm  

 3 ,1  m  

 
xx

c ececFCy 3

21..         (2) 

Now 
 

  x

p e
DD

xQ
Df

IPy 2

2 34

11
..
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  32422

2




xe
, put 2D since   02 f  

16

2xe
      (3) 

  The general solution of (1) is 

16

2
3

21

x
xx

pc

e
ececyyy    

 where
21  and cc are constants. 

2. Solve   xeyDD 52 23  . 

Solution: Given differential equation is 

  xeyDD 52 23    

   xQyDfei .,.   (1)  

where   232  DDDf  and   xexQ 5  

Now the auxiliary equation of (1) is   0mf  

 0232  mm  

    021  mm  

 2 ,1 m  

 
xx

c ececFCy 2

21..         (2) 

Now 
 

  x

p e
DD

xQ
Df

IPy 5

2 23

11
..


  

  25352

5




xe
, put 5D since   05 f  

12

5xe
      (3) 

  The general solution of (1) is 

12

5
2

21

x
xx

pc

e
ececyyy   

 where 21  and cc are constants. 

3. Solve   xeyDD 22 134  . 

Solution: Given differential equation is 

  xeyDD 22 134    

   xQyDfei .,.   (1)  

where   1342  DDDf  and   xexQ 2  

Now the auxiliary equation of (1) is   0mf  

 01342  mm  

2

64
 

2

52164 i
m





  



Dr.K.V.Nageswara Reddy, AITS(Autonomous) Page 15 
 

 32 im   

  xcxceFCy x

c 3sin3cos..    21

2    (2) 

Now 
 

  x

p e
DD

xQ
Df

IPy 2

2 134

11
..


  

  132422

2




xe
, put 2D since   02 f  

9

2xe
      (3) 

  The general solution of (1) is 

 
9

3sin3cos
2

21

2
x

x

pc

e
xcxceyyy   

 where
21  and cc are constants. 

4. Solve   xeyD 42 16  . 

Solution: Given differential equation is 

  xeyD 42 16    

   xQyDfei .,.   (1)  

where   162  DDf  and   xexQ 4  

Now the auxiliary equation of (1) is   0mf  

 0162  m  

 4im   

 xcxcFCyc 4sin4cos..    21    (2) 

Now 
 

  x

p e
D

xQ
Df

IPy 4

2 16

11
.. 


  

  164
2

4




 xe
, put 4D since   04 f  

32

4xe

      (3) 

  The general solution of (1) is 

32
4sin4cos

4

21

x

pc

e
xcxcyyy



  

 where 21  and cc are constants. 

5. Solve   54652  xeyDD . 

Solution: Given differential equation is 

  54652  xeyDD   

   xQyDfei .,.   (1)  

where   652  DDDf  and   54  xexQ  

Now the auxiliary equation of (1) is   0mf  
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 0652  mm  

 3 ,2 m  

 
xx

c ececFCy 3

2

2

1..         (2) 

Now 
 

   54
65

11
..

2



 x

p e
DD

xQ
Df

IPy  

 xx e
DD

e
DD

0

22 65

1
5

65

1
4





  

 
 

 

  6050
5

6151
4

2

0

2 





xx ee
 

 
6

5
2  xe      (3) 

  The general solution of (1) is 

6

5
23

2

2

1  xxx

pc eececyyy  

 where 21  and cc are constants. 

6. Solve   xeyDDD 223 485  . 

Solution: Given differential equation is 

  xeyDDD 223 485    

    xQyDfei .,.   (1)  

where   485 23  DDDDf  and   xexQ 2  

Now the auxiliary equation of (1) is   0mf  

 0485 23  mmm  

    021
2
 mm  

 2 ,2 ,1 m  

   xx

c exccecFCy 2

321..         (2) 

Now 
 

 
  

x

p e
DD

xQ
Df

IPy 2

2
21

11
..


  

Here   02 f . Let   1 DD , then   01122   

   
xx

p e
x

e
D

y 2
2

2

2
!22

1

12

1
   


     (3) 

  The general solution of (1) is 

  xxx

pc e
x

exccecyyy 2
2

2

321
!2

  

 where 321  and , ccc are constants. 

 

7. Solve   xyDD cosh232  . 

Solution: Given differential equation is 
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  xyDD cosh232    

   xQyDfei .,.   (1)  

where   232  DDDf  and   xxQ cosh  

Now the auxiliary equation of (1) is   0mf  

 0232  mm  

 2 ,1 m  

 
xx

c ececFCy 2

21..         (2) 

Now 
 

  x
DD

xQ
Df

IPyp cosh
23

11
..

2 
  

   






 






221

1 xx ee

DD
 

 
      













 xx e

DD
e

DD 21

1

21

1

2

1
 

 
      













 xx ee

D 2111

1

211

1

2

1
 

 







 xx exe

6

1

2

1
   (3) 

  The general solution of (1) is 









 xxxx

pc exeececyyy
6

1

2

12

21  

 where 21  and cc are constants. 

8. Solve    xeyDD x sinh212 22
 

. 

Solution: Given differential equation is 

   xeyDD x sinh212 22
 

  

   xQyDfei .,.   (1)  

where     212  DDDf  and   xexQ x sinh22  
 

Now the auxiliary equation of (1) is   0mf  

   012
2
 mm  

 2 1, ,1 m  

   xx

c ecexccFCy 2

321..        (2) 

Now 
 

 
  

 xe
DD

xQ
Df

IPy x

p sinh2
12

11
.. 2

2



 

 

     
x

DD
e

DD

x sinh2
12

1

12

1
2

2

2





 
 

     
 xxx ee

DD
e

D

 






2

2

2
12

1

122

1
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xxx ee

D
xe 







22

2

1121

1

121

1

9

1
 

xxx ee
x

xe  
4

1

69

1 2
2

   (3) 

  The general solution of (1) is 

  xxxxx

pc ee
x

xeecexccyyy  
4

1

69

1 2
22

321  

 where 321  and , ccc are constants. 

9. Solve the differential equation    23 11  xeyD . 

Solution: Given differential equation is 

   23 11  xeyD   

   xQyDfei .,.   (1)  

where   13  DDf  and    21 xexQ  

Now the auxiliary equation of (1) is   0mf  

013  m  

   011 2  mmm  

 
2

31
 and 1

i
mm


  

 













  xcxceecFCy xx

c
2

3
sin

2

3
cos..    32

2/

1  (2) 

Now 
 

 
 

 2
3

1
1

11
.. 


 x

p e
D

xQ
Df

IPy  

  
 12

11

1 2

2



 xx ee

DDD
 

        
xxx e

DDD
e

DDD
e

DDD

0

22

2

2 11

1

11

2

11

1








  

        
xxx ee

D
e 0

22

2

2 10010

1

1111

2

12212

1








  

1
3

2

7

2

 x
x

xe
e

   (3) 

  The general solution of (1) is 

1
3

2

72

3
sin

2

3
cos

2

32

2/

1 













  x

x
xx

pc xe
e

xcxceecyyy  

 where 321  and , ccc are constants. 

10. Solve the differential equation    323 143 xeyDD  . 

Solution: Given differential equation is 
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   323 143 xeyDD    

   xQyDfei .,.   (1)  

where   43 23  DDDf  and    31 xexQ   

Now the auxiliary equation of (1) is   0mf  

043 23  mm  

   0441 2  mmm  

   021
2
 mm  

 2 2, ,1 m  

   xx

c exccecFCy 2

321..     
  (2) 

Now 
 

 
 

 3
23

1
43

11
.. x

p e
DD

xQ
Df

IPy 


  

  
 xxx eee

DDD

 


 331
441

1 23

2
 

  441

3

43

3

4343

1
223

2

23

3

23 













DDD

e

DD

e

DD

e

DD

xxx

 

                41411

3

4232

3

43334030

1
223

2

23

3

23














D

eee xxx

 

316

3

44

1 23 xxx xeee 






 

  (3) 

  The general solution of (1) is 

 
316

3

44

1 23
2

321

xxx
xx

pc

xeee
exccecyyy


 


  

 where 321  and , ccc are constants. 

11. Find particular integral of   (𝑫𝟐 + 𝟏)𝒚 = 𝒄𝒐𝒔𝒉 𝟐𝒙. 

Solution: Given differential equation is 

(𝐷2 + 1)𝑦 = 𝑐𝑜𝑠ℎ 2𝑥 

          Now      P. I. =
1

𝐷2 + 1
𝑐𝑜𝑠ℎ 2𝑥 =

1

𝐷2 + 1
(

𝑒2𝑥 + 𝑒−2𝑥

2
) 

                                =
1

2
[

1

𝐷2 + 1
𝑒2𝑥 +

1

𝐷2 + 1
𝑒−2𝑥] 

                                =
1

2
[

1

22 + 1
𝑒2𝑥 +

1

(−2)2 + 1
𝑒−2𝑥] , since

1

𝑓(𝐷)
𝑒𝑎𝑥 =

𝑒𝑎𝑥

𝑓(𝑎)
 , if 𝑓(𝑎) ≠ 0 

                                =
1

5
(

𝑒2𝑥 + 𝑒−2𝑥

2
) =

1

5
 𝑐𝑜𝑠ℎ 2𝑥 

 

12. Find the particular integral of   (𝑫𝟐 + 𝒂𝟐)𝒚 = 𝒄𝒐𝒔 𝒂𝒙. 

Solution: Given differential equation is    
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(𝐷2 + 𝑎2)𝑦 = 𝑐𝑜𝑠 𝑎𝑥 

[𝑓(𝐷)]𝑦 = 𝑄(𝑥)                                               (1)  

where        𝑓(𝐷) = 𝐷2 + 𝑎2and𝑄(𝑥) = 𝑐𝑜𝑠 𝑎𝑥 

Now      P. I. =
1

𝑓(𝐷)
𝑄(𝑥) =

1

𝐷2 + 𝑎2
𝑐𝑜𝑠 𝑎𝑥            (2) 

Since
1

𝐷2 + 𝑎2
𝑒𝑖𝑎𝑥 =

1

(𝐷 + 𝑖𝑎)(𝐷 − 𝑖𝑎)
𝑒𝑖𝑎𝑥 =

1

(𝐷 − 𝑖𝑎)
[

1

𝐷 + 𝑖𝑎
𝑒𝑖𝑎𝑥] 

                                         =
1

(𝐷 − 𝑖𝑎)
[

1

2𝑖𝑎
𝑒𝑖𝑎𝑥],            

1

𝑓(𝐷)
𝑒𝑎𝑥 =

𝑒𝑎𝑥

𝑓(𝑎)
if 𝑓(𝑎) ≠ 0 

                                        =
𝑥

2𝑖𝑎
𝑒𝑖𝑎𝑥 ,   

1

𝐷 − 𝑎
𝑒𝑎𝑥 = 𝑥 𝑒𝑎𝑥  

=
𝑥

2𝑖𝑎
(𝑐𝑜𝑠 𝑎𝑥 + 𝑖 𝑠𝑖𝑛 𝑎𝑥) 

𝑖. 𝑒.,
1

𝐷2 + 𝑎2
(𝑐𝑜𝑠 𝑎𝑥 + 𝑖 𝑠𝑖𝑛 𝑎𝑥) = −𝑖

𝑥

2𝑎
𝑐𝑜𝑠 𝑎𝑥 +

𝑥

2𝑎
𝑠𝑖𝑛 𝑎𝑥 

Equating real and imaginary parts, we get 

1

𝐷2 + 𝑎2
𝑐𝑜𝑠 𝑎𝑥 =

𝑥

2𝑎
𝑠𝑖𝑛 𝑎𝑥 

1

𝐷2 + 𝑎2
𝑠𝑖𝑛 𝑎𝑥 = −

𝑥

2𝑎
𝑠𝑖𝑛 𝑎𝑥 

Method 2: P.I. of    xQyDf  when   axaxxQ cosor  sin , where ‘ a ’ is constant. 

Case I:
     

  0 if ,
sin

sin
1

sin
1 2

22



 a

a

ax
ax

D
ax

Df



 

Similarly, 
     

  0 if ,
cos

cos
1

cos
1 2

22



 a

a

ax
ax

D
ax

Df



 

Case II: Let   02 a . Then 
22 aD   is a factor of  2D  and hence it is a factor of

 Df . 

Let      222  DgaDDf  , where   02  ag . It can be shown that 

 ax
a

x
ax

aD
ax

a

x
ax

aD
sin

2
cos

1
     ,cos

2
sin

1
2222







 

Examples 

1. Solve   xyDD 3sin232  . 

Solution: Given differential equation is 

  xyDD 3sin232    

   xQyDfei .,.   (1)  

where   232  DDDf  and   xxQ 3sin  

Now the auxiliary equation of (1) is   0mf  

 0232  mm  

 2 ,1  m  

 
xx

c ececFCy 2

21..          (2) 
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Now 
 

  x
DD

xQ
Df

IPy p 3sin
23

11
..

2 
  

x
D

3sin
239

1


  93Put 22 D  

 x
D

D
x

D
3sin

499

73
3sin

73

1
2 





  

 
x

D
3sin

4999

73




  93Put 22 D  









 xx

dx

d
3sin73sin3

130

1
 

  xx 3sin73cos9
130

1
   (3) 

  The general solution of (1) is 

 xxececyyy xx

pc 3sin73cos9
130

12

21  
 

 where 21  and cc are constants. 

2. Solve   xyDD 3cos232  . 

Solution: Given differential equation is 

  xyDD 3cos232    

   xQyDfei .,.   (1)  

where   232  DDDf  and   xxQ 3cos  

Now the auxiliary equation of (1) is   0mf  

 0232  mm  

 2 ,1m  

 
xx

c ececFCy 2

21..         (2) 

Now 
 

  x
DD

xQ
Df

IPy p 3cos
23

11
..

2 
  

x
D

3cos
239

1


  93Put 22 D  

 x
D

D
x

D
x

D
3cos

499

73
3cos

73

1
3cos

73

1
2 










  

 
x

D
3cos

4999

73




  93Put 22 D  









 xx

dx

d
3cos73cos3

130

1
 

  xx 3cos73sin9
130

1
   (3) 

  The general solution of (1) is 
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 xxececyyy xx

pc 3cos73sin9
130

12

21   

 where
21  and cc are constants. 

3. Solve   xyD 22 cos24  . 

Solution: Given differential equation is 

  xyD 22 cos24    

   xQyDfei .,.    (1)  

where   42  DDf  and   xxQ 2cos2  

Now the auxiliary equation of (1) is   0mf  

 042  m  

 2 ,2 m  

 
xx

c ececFCy 2

2

2

1..     
    (2) 

Now 
 

   x
D

x
D

xQ
Df

IPy p 2cos1
4

1
cos2

4

11
..

2

2

2






  

x
DD

e x

2cos
4

1

4 22

0





   (3) 

Since 
404 2

0

2

0






xx e

D

e
 ,   0Put D  

4

1

40

0





xe

 

and xx
D

2cos
44

1
2cos

4

1
2 




 42Put 22 D  

 x2cos
8

1
  

xy p 2cos
8

1

4

1
     (3)       (4) 

  The general solution of (1) is 

xececyyy xx

pc 2cos
8

1

4

12

2

2

1  
 

 where 21  and cc are constants. 

4. Solve   xxeyD x 2cos2sin42  . 

Solution: Given differential equation is 

  xxeyD x 2cos2sin42    

   xQyDfei .,.    (1)  

where   42  DDf  and   xxexQ x 2cos2sin   

Now the auxiliary equation of (1) is   0mf  

 042  m  

 2im   
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 xcxcFCyc 2sin2cos..    21     (2) 

Now 
 

   xxe
D

xQ
Df

IPy x

p 2cos2sin
4

11
..

2



  

x
D

x
DD

e x

2cos
4

1
2sin

4

1

4 222 






   (3) 

Since 
414 22 




xx e

D

e
 ,   1Put D  

541

xx ee



  

 
x

x
x

x
x

D
2cos

4
2cos

22
2sin

4

1
2




 

  










 ax

a

x
ax

aD
af cos

2
sin

1
 using ,0 failure of Case

22

2
 

and
 

x
x

x
x

x
D

2sin
4

2sin
22

2cos
4

1
2




 

  










 ax

a

x
ax

aD
af sin

2
cos

1
 using ,0 failure of Case

22

2
 

x
x

x
xe

y
x

p 2sin
4

2cos
45

     (3)       (4) 

  The general solution of (1) is 

x
x

x
xe

xcxcyyy
x

pc 2sin
4

2cos
45

2sin2cos 21   

 where 21  and cc are constants. 

5. Solve   xxyD 2sin sin12  . 

Solution: Given differential equation is 

  xxyD 2sin sin12    

   xQyDfei .,.    (1)  

where   12  DDf  and   xxxQ 2sin sin  

Now the auxiliary equation of (1) is   0mf  

 012  m  

 im   

 xcxcFCyc sincos..    21     (2) 

Now 
 

  xx
D

xQ
Df

IPy p 2sin sin
1

11
..

2 
  

 xx
D

3coscos
1

1

2

1
2




  














 x

D
x

D
3cos

1

1
cos

1

1

2

1
22

  (3) 
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since
 

x
x

x
x

x
D

sin
2

sin
12

cos
1

1
2




 

  










 ax

a

x
ax

aD
af sin

2
cos

1
 using ,0 failure of Case

22

2
 

and 
19

3cos
3cos

1

1
2 




x
x

D
,  93Put 22 D  

8

3cos x
  

x
x

x
x

y p 3cos
16

sin
4

     (3)       (4) 

  The general solution of (1) is 

x
x

x
x

xcxcyyy pc 3cos
16

sin
4

sincos 21   

 where 21  and cc are constants. 

6. Solve  (𝑫𝟐 − 𝟒𝑫)𝒚 = 𝒆𝒙 + 𝒔𝒊𝒏 𝟑𝒙 𝒄𝒐𝒔 𝟐𝒙. 

Solution: Given differential equation is  

(𝐷2 − 4𝐷)𝑦 = 𝑒𝑥 + 𝑠𝑖𝑛 3𝑥 𝑐𝑜𝑠 2𝑥                       (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑄(𝑥) 

where 𝑓(𝐷) = 𝐷2 − 4𝐷, and 𝑄(𝑥) = 𝑒𝑥 + 𝑠𝑖𝑛 3𝑥 𝑐𝑜𝑠 2𝑥 

Now the auxiliary equation is 𝑓(𝑚) = 0, 𝑖. 𝑒., 𝑚2 − 4𝑚=0 

𝑖. 𝑒., 𝑚 = 0, 4 

The roots are real and different. 

∴    𝐶. 𝐹. = 𝑐1 + 𝑐2𝑒4𝑥                    (2) 

Now    𝑃. 𝐼. =
1

𝑓(𝐷)
𝑄(𝑥) =

1

𝑓(𝐷)
[𝑒𝑥 + 𝑠𝑖𝑛 3𝑥 𝑐𝑜𝑠 2𝑥] 

                     =
1

𝐷2 − 4𝐷
𝑒𝑥 +

1

2

1

𝐷2 − 4𝐷
2𝑠𝑖𝑛 3𝑥 𝑐𝑜𝑠 2𝑥 

                     = −
𝑒𝑥

3
+

1

2

1

𝐷2 − 4𝐷
(𝑠𝑖𝑛 5𝑥 + 𝑠𝑖𝑛 𝑥) 

                     = −
𝑒𝑥

3
+

1

2

1

𝐷2 − 4𝐷
𝑠𝑖𝑛 5𝑥 +

1

2

1

𝐷2 − 4𝐷
𝑠𝑖𝑛 𝑥                (3) 

Since
1

𝐷2 − 4𝐷
𝑠𝑖𝑛 5𝑥 =

1

−25 − 4𝐷
𝑠𝑖𝑛 5𝑥 = −

25 − 4𝐷

(25 + 4𝐷)(25 − 4𝐷)
𝑠𝑖𝑛 5𝑥 

                                             = −
25 − 4𝐷

625 − 16𝐷2
𝑠𝑖𝑛 5𝑥 =

4𝐷 − 25

1025
𝑠𝑖𝑛 5𝑥 

                                             =
1

1025
(20 𝑐𝑜𝑠 5𝑥 − 25 𝑠𝑖𝑛 5𝑥) 

                                             =
1

205
(4 𝑐𝑜𝑠 5𝑥 − 5 𝑠𝑖𝑛 5𝑥)                  (4) 

and
1

𝐷2 − 4𝐷
𝑠𝑖𝑛 𝑥 =

1

−1 − 4𝐷
𝑠𝑖𝑛 𝑥 = −

1 − 4𝐷

(1 + 4𝐷)(1 − 4𝐷)
𝑠𝑖𝑛 𝑥 

                                             = −
1 − 4𝐷

1 − 16𝐷2
𝑠𝑖𝑛 𝑥 =

4𝐷 − 1

17
𝑠𝑖𝑛 𝑥 

                                             =
1

17
(4 𝑐𝑜𝑠 𝑥 −  𝑠𝑖𝑛 𝑥)                         (5) 

Substituting (4) and (5) in (3), we get 
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                     𝑃. 𝐼. = −
𝑒𝑥

3
+

1

410
(4 𝑐𝑜𝑠 5𝑥 − 5 𝑠𝑖𝑛 5𝑥) +

1

34
(4 𝑐𝑜𝑠 𝑥 −  𝑠𝑖𝑛 𝑥)     (6) 

Therefore the general solution of (1) is 

𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

                        𝑦 = 𝑐1 + 𝑐2𝑒4𝑥 −
𝑒𝑥

3
+

1

410
(4 𝑐𝑜𝑠 5𝑥 − 5 𝑠𝑖𝑛 5𝑥) +

1

34
(4 𝑐𝑜𝑠 𝑥 −  𝑠𝑖𝑛 𝑥) 

Method 3: P.I. of       kxxQxQyDf   when where k is a positive integer: 

 Let   kxyDf  , operating by 
 Df

1
, we get 

 
kx

Df
y

1
  

 
kx

Df

1
P.I.         

To evaluate P.I., reduce 
 Df

1
 to the form 

 D1

1
 by taking out the lowest degree term 

from  Df . Now write 
 Df

1
 as    1

1


 D  and expand it in ascending powers of D using 

Binomial theorem upto the term containing 
kD . Then operate 

kx with the terms of the expansion of 

   1
1


 D . 

If  Df  is resolvable into factors then split up 
 Df

1
 into partial fractions and proceed. 

We frequently use the following rules: 

  ...11
1

1
  )( 321





DDDD

D
i  

  ...11
1

1
  )( 321





DDDD

D
ii  

 
  ...43211

1

1
  )( 322

2





DDDD

D
iii  

 
  ...43211

1

1
  )( 322

2





DDDD

D
iv  

 
  ...106311

1

1
  )( 323

3





DDDD

D
v  

 
  ...106311

1

1
  )( 323

3





DDDD

D
vi  

Examples 

1. Solve   32 1 xyDD  . 

Solution: Given differential equation is 

  32 1 xyDD    

   xQyDfei .,.    (1)  

where   12  DDDf  and   3xxQ   

Now the auxiliary equation of (1) is   0mf  



Dr.K.V.Nageswara Reddy, AITS(Autonomous) Page 26 
 

 012  mm  

2

3 1 i
m


  

 







  xcxceFCy x

c
2

3
sin

2

3
cos..    21

2/
 (2) 

Now 
 

  3

2 1

11
.. x

DD
xQ

Df
IPy p


  

   3121 xDD


  

       332222 ...1 xDDDDDD   

  331 xDD , since     0.....3534  xDxD  

    63 233333  xxxDxDx   (3) 

  The general solution of (1) is 

63
2

3
sin

2

3
cos 23

21

2/ 







  xxxcxceyyy x

pc  

 where 21  and cc are constants. 

2. Solve   323 2 xyDDD  . 

Solution: Given differential equation is 

  323 2 xyDDD    

   xQyDfei .,.    (1)  

where   DDDDf  23 2  and   3xxQ   

Now the auxiliary equation of (1) is   0mf  

 02 23  mmm  

  01
2
 mm  

1,1,0 m  

   x

c excccFCy  321..       (2) 

Now 
 

 
 

3

2

3

23
1

1

2

11
.. x

DD
x

DDD
xQ

Df
IPy p





  

    41

1

1

1 4

2

3

2

x

D
dxx

D 



   

  42
1

4

1
xD


  

  4432 ...54321
4

1
xDDDD   

 12096368
4

1 234  xxxx   (3) 

  The general solution of (1) is 
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   12096368
4

1 234

321   xxxxexcccyyy x

pc  

 where
21  and cc are constants. 

3. Solve    2322 23204 xxyDD  . 

Solution: Given differential equation is 

   2322 23204 xxyDD    

   xQyDfei .,.    (1)  

where    422  DDDf  and    23 2320 xxxQ   

Now the auxiliary equation of (1) is   0mf  

   0422  mm  

2 ,0,0 im   

 xcxcxccFCyc 2sin2cos..    4321    (2) 

Now 
 

 
 

 23

22
2320

4

11
.. xx

DD
xQ

Df
IPy p 


  

   23

1
2

2

23

2
2

2320
4

1
4

1
2320

4
14

1
xx

D

D
xx

D
D

























 

 23
642

2
2320...

64164
1

4

1
xx

DDD

D









  

 23
42

2
2...

64164

11

4

320
xx

DD

D









  

   
















 46

16

1
2

4

1

620
80 23

35

xxx
xx

 

20304020
3

40
4 2345  xxxxx  (3) 

  The general solution of (1) is 

20304020
3

40
42sin2cos 2345

4321  xxxxxxcxcxccyyy pc  

 where 4321  and  , , cccc are constants. 

4. Solve   xxxeyDDD x 2sin2 2223  . 

Solution: Given differential equation is 

  xxxeyDDD x 2sin2 2223    

   xQyDfei .,.    (1)  

where   DDDDf  23 2  and   xxxexQ x 2sin22   

Now the auxiliary equation of (1) is   0mf  

  012  02 223  mmmmmm  
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  01
2
 mm 1 ,1,0  m  

   x

c excccFCy  321..       (2) 

Now 
 

   xxxe
DDD

xQ
Df

IPy x

p 2sin
2

11
.. 22

23



  

DDD

x

DDD

xx

DDD

e x












2323

2

23

2

2

2sin

22
 

         DD

x

DDD

xxe x












424

2sin

212222 2

2

23

2

 

    
83

2sin
21

1

18

212
2






D

x
xxDD

D

e x

 

       
649

2sin83
...221

1

18 2

2222
2






D

xD
xxDDDD

D

e x

 

     
  6449

2sin83
421

1

18

222
2






xD
xxDDD

D

e x

 

    
100

2sin83
321

1

18

22
2 xD

xxDD
D

e x 
  

         
100

2sin82cos23
23122

1

18

2
2 xx

xxx
D

e x 
  

 
100

2sin82cos6
43

1

18

2
2 xx

xx
D

e x 
  

100

2sin42cos3
4

2

3

318

232 xx
x

xxe x 
   (3) 

  The general solution of (1) is 

 
100

2sin42cos3
4

2

3

318

232

321

xx
x

xxe
excccyyy

x
x

pc


 

 

 where 321  and  , ccc are constants. 

Method 4:P.I. of       VexQxQyDf xa  when  where a is constant and V  is a function of x : 

 We will use this method to find P.I. whenV is 
kxaxax or  cosor  sin or a polynomial of 

degree k . 

 In this case, 
 

 
 

V
aDf

eVe
Df

axax




11
P.I.        

Working Rule: To find P.I. for Veax
, take out 

axe to the left of  Df  and replace every D with 

aD  so that  Df  becomes  aDf   and now operate 
 aDf 

1
 with V alone by the previous 

methods. 

Examples 

1. Solve  (𝑫𝟑 + 𝟐𝑫𝟐 − 𝟑𝑫)𝒚 = 𝒙𝒆𝟑𝒙. 

 Solution: Given differential equation is  
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(𝐷3 + 2𝐷2 − 3𝐷)𝑦 = 𝑥𝑒3𝑥                             (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑥𝑒3𝑥  

where𝑓(𝐷) = 𝐷3 + 2𝐷2 − 3𝐷 

Now the auxiliary equation is 𝑓(𝑚) = 0,  

𝑖. 𝑒., 𝑚3 + 2𝑚2 − 3𝑚=0 

𝑖. 𝑒., 𝑚(𝑚 − 1)(𝑚 + 3) = 0 

𝑖. 𝑒., 𝑚 = 0, 1, −3 

The roots are real and different. 

∴    𝐶. 𝐹. = 𝑐1 + 𝑐2𝑒𝑥 + 𝑐3𝑒−3𝑥                          (2) 

Now    𝑃. 𝐼. =
1

𝑓(𝐷)
[𝑥𝑒3𝑥] =

1

𝐷3 + 2𝐷2 − 3𝐷
[𝑥𝑒3𝑥] 

                     = 𝑒3𝑥
1

(𝐷 + 3)3 + 2(𝐷 + 3)2 − 3(𝐷 + 3)
𝑥 ,   

since
1

𝑓(𝐷)
[𝑒𝑎𝑥𝑉(𝑥)] = 𝑒𝑎𝑥

1

𝑓(𝐷 + 𝑎)
𝑉(𝑥) 

                     = 𝑒3𝑥
1

𝐷3 + 11𝐷2 + 36𝐷 + 36
𝑥          

                     =
𝑒3𝑥

36
[1 +

𝐷3 + 11𝐷2 + 36𝐷

36
] 𝑥  

                     =
𝑒3𝑥

36
[𝑥 +

36

36
] =

𝑒3𝑥

36
[𝑥 + 1] 

Therefore the general solution of (1) is 

                𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. = 𝑐1 + 𝑐2𝑒𝑥 + 𝑐3𝑒−3𝑥 +
𝑒3𝑥

36
(𝑥 + 1) 

2. Solve    xeyDD x  167 22
. 

Solution: Given differential equation is 

   xeyDD x  167 22
  

   xQyDfei .,.    (1)  

where   672  DDDf  and    xexQ x  12
 

Now the auxiliary equation of (1) is   0mf  

 0672  mm  

    061  mm  

6 ,1m  

 
xx

c ececFCy 6

21..         (2) 

Now 
 

   xe
DD

xQ
Df

IPy x

p 


 1
67

11
.. 2

2
 

   
 

 
 

 
V

aDf
eVe

Df
x

DD
e axaxx







11
since ,1

6272

1
2

2
 

   x
DD

e
x

DD
e

x
x 








 






 1

4

3
1

1

4
1

43

1
2

2

2

2
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 x
DDe x








 







1
4

3
1

4

1
22

 

 x
DDe x















 1...

4

3
1

4

22

 

   













 x

DD
x

e x

1
4

3
1

4

22

 

   14
164

3
1

4

22












 x

e
x

e xx

  (3) 

  The general solution of (1) is 

 14
16

2
6

21  x
e

ececyyy
x

xx

pc  

 where 21  and cc are constants. 

3. Solve   xxeyDD x 2sin23 32  . 

Solution: Given differential equation is 

  xxeyDD x 2sin23 32    

   xQyDfei .,.    (1)  

where   232  DDDf  and   xxexQ x 2sin3   

Now the auxiliary equation of (1) is   0mf  

 0232  mm  

    021  mm  

2 ,1m  

 
xx

c ececFCy 2

21..         (2) 

Now 
 

   xxe
DD

xQ
Df

IPy x

p 2sin
23

11
.. 3

2



  

x
DD

xe
DD

x 2sin
23

1

23

1
2

3

2 



  

   
x

D
x

DD
e x 2sin

234

1

2333

1
2

3





  

 
 

     
  0 if,

sin
sin

1
 and 

11
since 2

22






 af

af

ax
ax

Df
V

aDf
eVe

Df

axax
 

x
D

x
DD

e x 2sin
23

1

23

1
2

3





  

x
D

D
x

DDe x

2sin
49

23

2

3
1

2 2

1
23












 




 

 
x

D
x

DDe x

2sin
449

23
...

2

3
1

2

23
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x
D

x
e x

2sin
40

23

2

3

2

3 









  

 xxx
e x

2sin22cos6
40

1

2

3

2

3









  

 xxx
e x

2sin2cos3
20

1

2

3

2

3









   (3) 

  The general solution of (1) is 

 xxx
e

ececyyy
x

xx

pc 2sin2cos3
20

1

2

3

2

3
2

21 







  

 where
21  and cc are constants. 

4. Solve   xexeyD xx sin1 32  
. 

Solution: Given differential equation is 

  xexeyD xx sin1 32  
  

   xQyDfei .,.    (1)  

where   12  DDf  and   xexexQ xx sin3  
 

Now the auxiliary equation of (1) is   0mf  

 012  m  

22 1 im   

im   

 xcxcFCyc sincos..    21      (2) 

Now 
 

   xexe
D

xQ
Df

IPy xx

p sin
1

11
.. 3

2



 

 

xe
D

x
DD

e x
x

sin
1

1

1

1

1 2

3

22 










 

 
 

 
x

D
exD

e x
x

sin
11

1
1

11
2

312

2










 

  x
DD

exDD
e x

x

sin
22

1
...1

2 2

342






 

  x
D

exx
e x

x

sin
221

1
6

2

3






 

  x
D

exx
e x

x

sin
12

1
6

2

3






 

  x
D

D
exx

e x
x

sin
14

12
6

2 2

3








 

 
 

x
D

exx
e x

x

sin
114

12
6

2

3








 

   xx
e

xx
e xx

sincos2
5

6
2

3 


  (3) 
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  The general solution of (1) is 

   xx
e

xx
e

xcxcyyy
xx

pc sincos2
5

6
2

sincos 3

21 


 

 where
21  and cc are constants. 

Method 5: P.I. of    xQyDf   when   mxxQ m  V, being a positive integer and V is any 

function of x : 

 Here V is either axax cosor  sin only. It should not be of the form 
axn ex or  . 

 If V is 
nx then 

nmm xx  V  and P.I. can be evaluated by the short method discussed in 

Method 3.  

 If V is 
axe  then 

axmm exx  V  and P.I. can be evaluated by the short method discussed in 

Method 4.  

 But V is of the form axax cosor  sin , P.I. can be evaluated as follows. 

Working Rule for finding P.I. of   axxaxxyDf mm cosor  sin : 

 
   

 axiaxx
Df

axx
Df

i mm sin cos
1

 of (I.P.)Part Imaginary sin
1

P.I.  )(   

  
 

iaxmex
Df

1
 of I.P.  

 
   

iaxmm ex
Df

axx
Df

ii
1

 of (R.P.)Part  Realcos
1

P.I.  )(    

 Now P.I. can be evaluated by the short method discussed in Method 4. 

Method6: Alternative method for finding P.I. of    xQyDf   when    1when  V  mxxQ m

where V is any function of x : 

Let   VxyDf  where V is a function of x . Operating with
 Df

1
, we get 

 
 V

1
x

Df
y  . 

 
 V

1
P.I.      x

Df
  

 Consider     V2V V  V;V V 22 DDxxDDxxD   

Similarly   VV V 1 nnn nDDxxD  

    V... V... 1

2

2

1

11

2

2

1

1 nn

nnn

nn

nnn aDaDaDaDxxaDaDaDaD  






 

  V...1 1

2

1

1



  n

nn aDnanD  

         V V  V ' DfDfxxDf    (1) 

Let   
 

 V
1

V   VV 11
Df

Df     (2) 

  
 

 
  1

'

11 V
1

 V V
1

 
Df

Dfx
Df

xDf 







 , from (1) and (2) 

Operating with 
 Df

1
 on both sides, we get 
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  1

'

11 V
1

 
1

V 
1

V
1

Df
Df

Df
x

DfDf
x   

 
 

   
 

  1

'

11 V
1

 
1

V
1

V
1

Df
Df

DfDf
xx

Df
  

 
 

 
 

  1

'

1 V
1

 
1

V
1

Df
Df

Df
xx

Df








  

 
 

 
 

 
V

1
 

1
V

1
    '

Df
Df

Df
xx

Df








  

 

Examples 

1. Solve   (𝑫𝟐 − 𝟏)𝒚 = 𝒙𝒆𝒙𝒔𝒊𝒏 𝒙. 

Solution: Given differential equation is  

(𝐷2 − 1)𝑦 = 𝑥𝑒𝑥𝑠𝑖𝑛 𝑥                            (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑥𝑒𝑥𝑠𝑖𝑛 𝑥 

where𝑓(𝐷) = 𝐷2 − 1 

Now the auxiliary equation is 𝑓(𝑚) = 0, 𝑖. 𝑒., 𝑚2 − 1=0 

𝑖. 𝑒., 𝑚 = −1, 1 

The roots are real and different. 

∴    𝐶. 𝐹. = 𝑐1𝑒−𝑥 + 𝑐2𝑒𝑥                    (2) 

Now    𝑃. 𝐼. =
1

𝑓(𝐷)
[𝑥𝑒𝑥𝑠𝑖𝑛 𝑥] =

1

𝐷2 − 1
[𝑥𝑒𝑥𝑠𝑖𝑛 𝑥] 

                     = 𝑒𝑥
1

(𝐷 + 1)2 − 1
[𝑥𝑠𝑖𝑛 𝑥] , since

1

𝑓(𝐷)
[𝑒𝑎𝑥𝑉(𝑥)] = 𝑒𝑎𝑥

1

𝑓(𝐷 + 𝑎)
𝑉(𝑥) 

                     = 𝑒𝑥
1

𝐷2 + 2𝐷
[𝑥𝑠𝑖𝑛 𝑥] 

                     = 𝑒𝑥 [𝑥 −
2𝐷 + 2

𝐷2 + 2𝐷
]

1

𝐷2 + 2𝐷
𝑠𝑖𝑛 𝑥 , since

1

𝑓(𝐷)
[𝑥𝑉(𝑥)] = [𝑥 −

𝑓′(𝐷)

𝑓(𝐷)
]

1

𝑓(𝐷)
𝑉(𝑥) 

                     = 𝑒𝑥 [𝑥 −
2𝐷 + 2

𝐷2 + 2𝐷
]

1

(−1 + 2𝐷)
sin 𝑥  , since

1

𝑓(𝐷2)
𝑠𝑖𝑛 𝑎𝑥 =

𝑠𝑖𝑛 𝑎𝑥

𝑓(−𝑎2)
 

                     = 𝑒𝑥 [𝑥 −
2𝐷 + 2

𝐷2 + 2𝐷
]

2𝐷 + 1

4𝐷2 − 1
sin 𝑥 

                     = −
𝑒𝑥

5
[𝑥 −

2𝐷 + 2

𝐷2 + 2𝐷
] (2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥) 

                     = −
𝑒𝑥

5
[𝑥(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥) −

2𝐷 + 2

−1 + 2𝐷
(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥)] 

                     = −
𝑒𝑥

5
[𝑥(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥) −

(2𝐷 + 2)(2𝐷 + 1)

4𝐷2 − 1
(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥)] 

                     = −
𝑒𝑥

5
[𝑥(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥) +

1

5
(4𝐷2 + 6𝐷 + 2)(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥)] 

                     = −
𝑒𝑥

5
[𝑥(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥) +

1

5
(2 𝑐𝑜𝑠 𝑥 − 14 𝑠𝑖𝑛 𝑥)] 

Therefore the general solution of (1) is 

                𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. = 𝑐1𝑒−𝑥 + 𝑐2𝑒𝑥 −
𝑒𝑥

5
[𝑥(2 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥) +

1

5
(2 𝑐𝑜𝑠 𝑥 − 14 𝑠𝑖𝑛 𝑥)] 
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2. Solve   (𝑫𝟐 − 𝟒𝑫 + 𝟒)𝒚 = 𝟖𝒙𝟐𝒆𝟐𝒙𝒔𝒊𝒏 𝟐𝒙. 

Solution: Given differential equation is  

(𝐷2 − 4𝐷 + 4)𝑦 = 8𝑥2𝑒2𝑥𝑠𝑖𝑛 2𝑥                            (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑄(𝑥) 

where𝑓(𝐷) = 𝐷2 − 1 and 𝑄(𝑥) = 8𝑥2𝑒2𝑥𝑠𝑖𝑛 2𝑥 

Now the auxiliary equation is 𝑓(𝑚) = 0 ⇒ 𝑚2 − 4𝑚 + 4=0 

⇒ (𝑚 − 2)(𝑚 − 2) = 0 ⇒  𝑚 = 2, 2 

The roots are real and equal. 

∴    𝐶. 𝐹. = (𝑐1 + 𝑐2𝑥)𝑒2𝑥    (2) 

Here P.I. can be found out using the above case twice which is laborious. We will find P.I. in another 

way. 

Now    𝑃. 𝐼. =
1

𝑓(𝐷)
𝑄(𝑥) =

1

𝐷2 − 4𝐷 + 4
[8𝑥2𝑒2𝑥𝑠𝑖𝑛 2𝑥] 

                     = 8𝑒2𝑥
1

(𝐷 + 2)2 − 4(𝐷 + 2) + 4
[𝑥2𝑠𝑖𝑛 2𝑥] ,

since
1

𝑓(𝐷)
[𝑒𝑎𝑥𝑉(𝑥)] = 𝑒𝑎𝑥

1

𝑓(𝐷 + 𝑎)
𝑉(𝑥) 

                     = 8𝑒2𝑥
1

𝐷2
[𝑥2𝑠𝑖𝑛 2𝑥] = Imaginary Part of  8𝑒2𝑥

1

𝐷2
[𝑥2𝑒𝑖2𝑥] 

                     = I. P. of 8𝑒2𝑥𝑒𝑖2𝑥
1

(𝐷 + 𝑖2)2
𝑥2 

                     = I. P. of 8𝑒2𝑥𝑒𝑖2𝑥
1

4𝑖2 (1 +
𝐷

2𝑖
)

2 𝑥2 

                     = I. P. of(−2𝑒2𝑥)𝑒𝑖2𝑥 (1 +
𝐷

2𝑖
)

−2

𝑥2 

                     = I. P. of(−2𝑒2𝑥)𝑒𝑖2𝑥 (1 − 2
𝐷

2𝑖
+ 3

𝐷2

4𝑖2
+ ⋯ ) 𝑥2 

                     = I. P. of(−2𝑒2𝑥)𝑒𝑖2𝑥 (𝑥2 −
2𝑥

𝑖
+

3

2𝑖2
) 

                     = I. P. of(−2𝑒2𝑥)𝑒𝑖2𝑥 (𝑥2 + 𝑖2𝑥 −
3

2
) 

                     = I. P. of(−2𝑒2𝑥)(𝑐𝑜𝑠 2𝑥 + 𝑖 𝑠𝑖𝑛 2𝑥) [(𝑥2 −
3

2
) + 𝑖2𝑥] 

                     = (−2𝑒2𝑥) [2𝑥 𝑐𝑜𝑠 2𝑥 + (𝑥2 −
3

2
)  𝑠𝑖𝑛 2𝑥]  (3) 

Therefore the general solution of (1) is 

       𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. = (𝑐1 + 𝑐2𝑥)𝑒2𝑥 − 2𝑒2𝑥 [2𝑥 𝑐𝑜𝑠 2𝑥 + (𝑥2 −
3

2
)  𝑠𝑖𝑛 2𝑥] 

3. Solve   (𝑫𝟐 + 𝟗)𝒚 = 𝒙 𝒔𝒊𝒏 𝟐𝒙. 

Solution: Given differential equation is  

(𝐷2 + 9)𝑦 = 𝑥 𝑠𝑖𝑛 2𝑥                            (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑥 𝑠𝑖𝑛 2𝑥 

where𝑓(𝐷) = 𝐷2 + 9 

Now the auxiliary equation is 𝑓(𝑚) = 0, 𝑖. 𝑒., 𝑚2 + 9=0 

𝑖. 𝑒., 𝑚 = ±𝑖3 

The roots are real and different. 

∴    𝐶. 𝐹. = 𝑐1𝑐𝑜𝑠 3𝑥 + 𝑐2𝑠𝑖𝑛 3𝑥                   (2) 
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Now    𝑃. 𝐼. =
1

𝑓(𝐷)
[𝑥 𝑠𝑖𝑛 2𝑥] =

1

𝐷2 + 9
[𝑥 𝑠𝑖𝑛 2𝑥] 

                     = [𝑥 −
2𝐷

𝐷2 + 9
]

1

𝐷2 + 9
𝑠𝑖𝑛 2𝑥 , since

1

𝑓(𝐷)
[𝑥𝑉(𝑥)] = [𝑥 −

𝑓′(𝐷)

𝑓(𝐷)
]

1

𝑓(𝐷)
𝑉(𝑥) 

                     = [𝑥 −
2𝐷

𝐷2 + 9
]

1

(−4 + 9)
sin 2𝑥  , since

1

𝑓(𝐷2)
𝑠𝑖𝑛 𝑎𝑥 =

𝑠𝑖𝑛 𝑎𝑥

𝑓(−𝑎2)
 

                     =
𝑥 𝑠𝑖𝑛 2𝑥

5
−

2𝐷

5(𝐷2 + 9)
𝑠𝑖𝑛 2𝑥 

                     =
𝑥 𝑠𝑖𝑛 2𝑥

5
−

2𝐷

5(−4 + 9)
𝑠𝑖𝑛 2𝑥, since

1

𝑓(𝐷2)
𝑠𝑖𝑛 𝑎𝑥 =

𝑠𝑖𝑛 𝑎𝑥

𝑓(−𝑎2)
 

                     =
𝑥 𝑠𝑖𝑛 2𝑥

5
−

2𝐷

25
𝑠𝑖𝑛 2𝑥 

                     =
𝑥 𝑠𝑖𝑛 2𝑥

5
−

4

25
𝑐𝑜𝑠 2𝑥                                    (3) 

Therefore the general solution of (1) is 

                  𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. = 𝑐1𝑐𝑜𝑠 3𝑥 + 𝑐2𝑠𝑖𝑛 3𝑥 +
𝑥 𝑠𝑖𝑛 2𝑥

5
−

4

25
𝑐𝑜𝑠 2𝑥 

Method of Variation of Parameters: 

Wronskian:Wronskian of two functions    xvxu  and  is denoted by  vuW ,  and is defined by 

 
dx

du
v

dx

dv
u

vu

vu

dx

dv

dx

du
vu

vuW 
''

or  ,  

Working Rule:To solve RQy
dx

dy
P

dx

yd


2

2

by the method of variation of parameters, follow 

these steps 

1. Reduce the given equation to the standard form , if necessary. 

2. Find the solution of 0
2

2

 Qy
dx

dy
P

dx

yd
and let the solution be  

   xvcxucyFC c 21..   

3. Take    xvBxuAyIP p   ..  , where A and B are functions of x . 

4. Find  
dx

du
v

dx

dv
uvuW , . 

5. Find A and B using  

      
,

   , 
,

dx
vuW

uR
Bdx

vuW

vR
A  

6. Write the general solution of the given equation as 

pc yyy   

Examples 

1. Solve  (𝑫𝟐 + 𝒂𝟐)𝒚 = 𝒕𝒂𝒏 𝒂𝒙 by method of variation of parameters. 

Solution: Given differential equation is  

(𝐷2 + 𝑎2)𝑦 = 𝑡𝑎𝑛 𝑎𝑥                       (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑅 
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where𝑓(𝐷) = 𝐷2 + 3𝐷 + 2 and 𝑅 = 𝑡𝑎𝑛 𝑎𝑥 

Now the auxiliary equation is 𝑓(𝑚) = 0, 𝑖. 𝑒., 𝑚2 + 𝑎2=0 

𝑖. 𝑒., 𝑚 = ±𝑖𝑎 

The roots are complex. 

∴    𝐶. 𝐹. = 𝑐1𝑐𝑜𝑠 𝑎𝑥 + 𝑐2𝑠𝑖𝑛 𝑎𝑥                   (2) 

Consider                 𝑃. 𝐼. = 𝐴 𝑐𝑜𝑠 𝑎𝑥 + 𝐵 𝑠𝑖𝑛 𝑎𝑥                   (3)            

Here 𝑢 = 𝑐𝑜𝑠 𝑎𝑥, 𝑣 = 𝑠𝑖𝑛 𝑎𝑥 

Then      𝑊(𝑢, 𝑣) = 𝑢
𝑑𝑣

𝑑𝑥
− 𝑣

𝑑𝑢

𝑑𝑥
= 𝑐𝑜𝑠 𝑎𝑥 (𝑎 𝑐𝑜𝑠 𝑎𝑥) − 𝑠𝑖𝑛 𝑎𝑥 (– 𝑎 𝑠𝑖𝑛 𝑎𝑥) = 𝑎 

Where 𝐴 and 𝐵 are given by 

            𝐴 = − ∫
𝑣𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = − ∫

𝑠𝑖𝑛 𝑎𝑥 𝑡𝑎𝑛 𝑎𝑥

𝑎
𝑑𝑥 = −

1

𝑎
∫

1 − 𝑐𝑜𝑠2𝑎𝑥

𝑐𝑜𝑠 𝑎𝑥
𝑑𝑥 

               = −
1

𝑎
∫ (𝑠𝑒𝑐 𝑎𝑥 − 𝑐𝑜𝑠 𝑎𝑥) 𝑑𝑥 = −

1

𝑎
[
log(𝑠𝑒𝑐 𝑎𝑥 + 𝑡𝑎𝑛 𝑎𝑥)

𝑎
−

𝑠𝑖𝑛 𝑎𝑥

𝑎
] 

               =
1

𝑎2
[𝑠𝑖𝑛 𝑎𝑥 − log(𝑠𝑒𝑐 𝑎𝑥 + 𝑡𝑎𝑛 𝑎𝑥)] 

            𝐵 = ∫
𝑢𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = ∫

𝑐𝑜𝑠 𝑎𝑥 𝑡𝑎𝑛 𝑎𝑥

𝑎
𝑑𝑥 =

1

𝑎
∫ 𝑠𝑖𝑛 𝑎𝑥 𝑑𝑥 = −

1

𝑎2
𝑐𝑜𝑠 𝑎𝑥 

∴ (3) ⇒   𝑃. 𝐼. =
1

𝑎2
[𝑠𝑖𝑛 𝑎𝑥 − log(𝑠𝑒𝑐 𝑎𝑥 + 𝑡𝑎𝑛 𝑎𝑥)] 𝑐𝑜𝑠 𝑎𝑥 −

1

𝑎2
𝑐𝑜𝑠 𝑎𝑥 𝑠𝑖𝑛 𝑎𝑥 

                          = −
1

𝑎2
𝑐𝑜𝑠 𝑎𝑥 . log(𝑠𝑒𝑐 𝑎𝑥 + 𝑡𝑎𝑛 𝑎𝑥) 

Hence the general solution of (1) is 

𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

               𝑦 = 𝑐1𝑐𝑜𝑠 𝑎𝑥 + 𝑐2𝑠𝑖𝑛 𝑎𝑥 −
1

𝑎2
𝑐𝑜𝑠 𝑎𝑥 . log(𝑠𝑒𝑐 𝑎𝑥 + 𝑡𝑎𝑛 𝑎𝑥) 

2. Solve  (𝑫𝟐 − 𝟐𝑫)𝒚 = 𝒆𝒙𝒔𝒊𝒏 𝒙 by the method of variation of parameters. 

Solution:  Given differential equation is  

(𝐷2 − 2𝐷)𝑦 = 𝑒𝑥𝑠𝑖𝑛 𝑥                     (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑅 

where𝑓(𝐷) = 𝐷2 − 2𝐷 and 𝑅 = 𝑒𝑥𝑠𝑖𝑛 𝑥 

Now the auxiliary equation is 𝑓(𝑚) = 0, 𝑖. 𝑒., 𝑚2 − 2𝑚 = 0 

𝑖. 𝑒., 𝑚(𝑚 − 2) = 0, 𝑖. 𝑒., 𝑚 = 0, 2 

The roots are real and different. 

∴    𝐶. 𝐹. = 𝑐1 + 𝑐2𝑒2𝑥                    (2) 

By the method of variation of parameters 

Consider                 𝑃. 𝐼. = 𝐴 + 𝐵 𝑒2𝑥                    (3)            

Here 𝑢 = 1, 𝑣 = 𝑒2𝑥  

Then      𝑊(𝑢, 𝑣) = 𝑢
𝑑𝑣

𝑑𝑥
− 𝑣

𝑑𝑢

𝑑𝑥
= 1 (2𝑒2𝑥) − 𝑒2𝑥(0) = 2𝑒2𝑥  

Where 𝐴 and 𝐵 are given by 

            𝐴 = − ∫
𝑣𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = − ∫

𝑒2𝑥𝑒𝑥𝑠𝑖𝑛 𝑥

2𝑒2𝑥
𝑑𝑥 = −

1

2
∫ 𝑒𝑥𝑠𝑖𝑛 𝑥 𝑑𝑥 

               = −
1

4
[𝑒𝑥𝑠𝑖𝑛 𝑥 − 𝑒𝑥𝑐𝑜𝑠 𝑥] 
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            𝐵 = ∫
𝑢𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = ∫

1. 𝑒𝑥𝑠𝑖𝑛 𝑥

2𝑒2𝑥
𝑑𝑥 =

1

2
∫ 𝑒−𝑥𝑠𝑖𝑛 𝑥 𝑑𝑥 

               =
1

4
[−𝑒−𝑥𝑠𝑖𝑛 𝑥 − 𝑒−𝑥𝑐𝑜𝑠 𝑥] 

∴ (3) ⇒   𝑃. 𝐼. = −
1

4
[𝑒𝑥𝑠𝑖𝑛 𝑥 − 𝑒𝑥𝑐𝑜𝑠 𝑥] +

1

4
[−𝑒−𝑥𝑠𝑖𝑛 𝑥 − 𝑒−𝑥𝑐𝑜𝑠 𝑥]. 𝑒2𝑥  

                           = −
𝑒𝑥𝑠𝑖𝑛 𝑥

2
 

Hence the general solution of (1) is 

𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

         ∴          𝑦 = 𝑐1 + 𝑐2𝑒2𝑥 −
𝑒𝑥𝑠𝑖𝑛 𝑥

2
 

3. Solve the equation using method of variation of parameters: (𝑫𝟐 + 𝟑𝑫 + 𝟐)𝒚 = 𝒆𝒙 + 𝒙𝟐. 

Solution: Given differential equation is  

(𝐷2 + 3𝐷 + 2)𝑦 = 𝑒𝑥 + 𝑥2                       (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑒𝑥 + 𝑥2  

where𝑓(𝐷) = 𝐷2 + 3𝐷 + 2 

Now the auxiliary equation is 𝑓(𝑚) = 0, 𝑖. 𝑒., 𝑚2 + 3𝑚 + 2=0 

𝑖. 𝑒., 𝑚 = −1, −2 

The roots are real and different. 

∴    𝐶. 𝐹. = 𝑐1𝑒−𝑥 + 𝑐2𝑒−2𝑥                    (2) 

Consider                 𝑃. 𝐼. = 𝐴 𝑒−𝑥 + 𝐵 𝑒−2𝑥                    (3)             

Here 𝑢 = 𝑒−𝑥 , 𝑣 = 𝑒−2𝑥  

Then      𝑊(𝑢, 𝑣) = 𝑢
𝑑𝑣

𝑑𝑥
− 𝑣

𝑑𝑢

𝑑𝑥
= −2𝑒−𝑥𝑒−2𝑥 + 𝑒−2𝑥𝑒−𝑥 = −𝑒−3𝑥  

Where 𝐴 and 𝐵 are given by 

            𝐴 = − ∫
𝑣𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = − ∫

𝑒−2𝑥(𝑒𝑥 + 𝑥2)

−𝑒−3𝑥
𝑑𝑥 = ∫ (𝑒2𝑥 + 𝑒𝑥𝑥2) 𝑑𝑥 

                =
𝑒2𝑥

2
+ (𝑥2 − 2𝑥 + 2)𝑒𝑥  

            𝐵 = ∫
𝑢𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = ∫

𝑒−𝑥(𝑒𝑥 + 𝑥2)

−𝑒−3𝑥
𝑑𝑥 = − ∫ (𝑒3𝑥 + 𝑒2𝑥𝑥2) 𝑑𝑥 

                = − [
𝑒3𝑥

3
+ (

𝑥2

2
−

𝑥

2
+

1

4
) 𝑒2𝑥] 

∴ (3) ⇒   𝑃. 𝐼. = [
𝑒2𝑥

2
+ (𝑥2 − 2𝑥 + 2)𝑒𝑥] 𝑒−𝑥 − [

𝑒3𝑥

3
+ (

𝑥2

2
−

𝑥

2
+

1

4
) 𝑒2𝑥] 𝑒−2𝑥  

                          =
𝑒𝑥

2
+ (𝑥2 − 2𝑥 + 2) −

𝑒𝑥

3
− (

𝑥2

2
−

𝑥

2
+

1

4
) 

                          =
𝑒𝑥

6
+

1

4
(2𝑥2 − 6𝑥 + 7) 

Hence the general solution of (1) is 

𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

               𝑦 = 𝑐1𝑒−𝑥 + 𝑐2𝑒−2𝑥 +
𝑒𝑥

6
+

1

4
(2𝑥2 − 6𝑥 + 7) 
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4. Solve  (𝑫𝟐 + 𝟏)𝒚 = 𝒄𝒐𝒔𝒆𝒄 𝒙 by method of variation of parameters. 

Solution: Given differential equation is  

(𝐷2 + 1)𝑦 = 𝑐𝑜𝑠𝑒𝑐 𝑥                       (1) 

𝑖. 𝑒., [𝑓(𝐷)]𝑦 = 𝑅 

where𝑓(𝐷) = 𝐷2 + 1 and 𝑅 = 𝑐𝑜𝑠𝑒𝑐 𝑥 

Now the auxiliary equation is 𝑓(𝑚) = 0, 𝑖. 𝑒., 𝑚2 + 1=0 

𝑖. 𝑒., 𝑚 = ±𝑖 

The roots are complex. 

∴    𝐶. 𝐹. = 𝑐1𝑐𝑜𝑠 𝑥 + 𝑐2𝑠𝑖𝑛 𝑥                   (2) 

Consider                 𝑃. 𝐼. = 𝐴 𝑐𝑜𝑠 𝑥 + 𝐵 𝑠𝑖𝑛 𝑥        (3)            

Here 𝑢 = 𝑐𝑜𝑠 𝑥, 𝑣 = 𝑠𝑖𝑛 𝑥 

Then      𝑊(𝑢, 𝑣) = 𝑢
𝑑𝑣

𝑑𝑥
− 𝑣

𝑑𝑢

𝑑𝑥
= 𝑐𝑜𝑠 𝑥 (𝑐𝑜𝑠 𝑥) − 𝑠𝑖𝑛 𝑥 (– 𝑠𝑖𝑛 𝑥) = 1 

Where 𝐴 and 𝐵 are given by 

            𝐴 = − ∫
𝑣𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = − ∫

𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠𝑒𝑐 𝑥

1
𝑑𝑥 = − ∫ 𝑑𝑥 = −𝑥 

            𝐵 = ∫
𝑢𝑅

𝑊(𝑢, 𝑣)
𝑑𝑥 = ∫

𝑐𝑜𝑠 𝑥 𝑐𝑜𝑠𝑒𝑐 𝑥

1
𝑑𝑥 = ∫ 𝑐𝑜𝑡 𝑥 𝑑𝑥 = log(𝑠𝑖𝑛 𝑥) 

∴ (3) ⇒   𝑃. 𝐼. = −𝑥 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥. log(𝑠𝑖𝑛 𝑥)  (3) 

Hence the general solution of (1) is 

𝑦 = 𝐶. 𝐹. +𝑃. 𝐼. 

                         𝑦 = 𝑐1𝑐𝑜𝑠 𝑥 + 𝑐2𝑠𝑖𝑛 𝑥 − 𝑥 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥. log(𝑠𝑖𝑛 𝑥) 

ELECTRICAL CIRCUIT PROBLEMS 

L -C - R Circuit: Cinsider the discharge of a condenser C  through an induction L  and the 

resistance R . Since the voltage drop across L , C  and R respectively 
dt

dq
R

c

q

dt

qd
L  and  ,

2

2

. 

  By Kirchoff’s law,  0  
2

2


c

q

dt

dq
R

dt

qd
L  

1. A condenser of capacity C discharged through an inductance L and resistance R in series 

and the charge q at time t satisfies the equation  0  
2

2


c

q

dt

dq
R

dt

qd
L . Given that 25.0L

henries, 250R ohms, 
6102 C farads, and that when 0t , charge 002.0q coulombs 

and the current 0
dt

dq
, obtain the value of q in terms of t . 

Solution: Given differential equation is  

0  or   0  
2

2

2

2


Lc

q

dt

dq

L

R

dt

qd

c

q

dt

dq
R

dt

qd
L  

Substituting the given values in (1), we get 

0 
10225.0

 
25.0

250
62

2







q

dt

dq

dt

qd
 

or 0  1021000 6

2

2

 q
dt

dq

dt

qd
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or   0  1021000 62  qDD   (1) 

 Its auxiliary equation is 01021000 62  mm  

1323 5007500 500
2

108101000 66

iim 


  

 Thus the solution of (1) is  

   tctceq t 1323sin1323cos 21

500  
  (2) 

 when 0t , 002.0q 002.01 c  

   tctce
dt

dq t 1323sin1323cos 500 21

500  
 

 tctce t 1323cos1323sin1323 21

500  
 (3) 

  when 0t , 0008.00 2  c
dt

dq
 

 Hence the required solution is  tteq t 1323sin 0008.01323cos 002.0500  
 

2. The charge  tq  on the capacitor is given by the D.E., tq
dt

dq

dt

qd
2sin71  100012010

2

2

  . at 

time zero the current is zero and the charge on the capacitor is 
2000

1
coulomb. Find the charge 

on the capacitor for 0t . 

Solution: Given differential equation is tq
dt

dq

dt

qd
2sin71  100012010

2

2

  

tq
dt

dq

dt

qd
2sin

10

71
  10012

2

2

  

  tqDD 2sin
10

71
  100122    (1) 

 Its auxiliary equation is 0100122  mm  

8 6
2

40014412
im 


  

   tctceFC t 8sin8cos.. 21

6  
  (2) 

 Now t
DD

IP 2sin
10

71

10012

1
..

2 
  











 t

D
2sin

100124

1
 

10

71
, Put 42 D  

  









 t

D
2sin

812

1
 

10

71
 













 t

D

D
2sin

64

8
 

120

71
2

 













 t

D
2sin

644

8
 

120

71
, Put 42 D  
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 tt 2sin82cos2

68

1
 

120

71
 

 tt 2cos2sin4
240

1
    (3) 

Thus the solution of (1) is .... IPFCq   

     tttctceq t 2cos2sin4
240

1
8sin8cos 21

6  
  (4) 

 when 0t , 
1500

7

240

1

2000

1

2000

1
11  ccq  

     tctcetctce
dt

dq tt 8cos88sin88sin8cos6 21

6

21

6  
 

 tt 2sin22cos8
240

1
  (3) 

  when 0t , 0
30

1
860 21  cc

dt

dq
 

1500

1

750

4

30

1

250

7
8

30

1
68 2212





 cccc  

 Hence the required solution is  

   tttt
e

q
t

2cos2sin4
240

1
8sin8cos7

1500

6




 

and      tttt
e

dt

dq
ti

t

2sin2cos4
120

1
8sin8cos

30

6




 

 here the current is a sum of two parts, namely transient part and steady state part. 

 Transient part  tt
e t

8sin8cos
30

6




 

 It is named so, because it decreses as ‘ t ’ increases. 

 Steady state part  tt 2sin2cos4
120

1
  

3. An uncharged condenser of capacity C is charged by applying an e.m.f. 








LC

t
E sin , 

through leads of self-inductance L and negligible resistance. Prove that at any time t , the charge 

on one of the plates is 
























LC

t

LC

t

LC

tEC
cossin 

2
. 

Solution: Let q be the charge on the condenser, the differential equation of the circuit is 











LC

t
E

q

dt

qd
L sin  

C
 

2

2

 











LC

t

L

E

LC

q

dt

qd
sin   

2

2

 




















LC

t

L

E
q

LC
D sin   

12
  (1) 
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 Its auxiliary equation is 0
12 

LC
m

LC

1
 im   

  

















LC

t
c

LC

t
cFC sincos.. 21  (2) 

 Now 











LC

t

L

E

LC
D

IP sin
1

1
..

2

 













LC

t

LC
D

L

E
sin

1

1

2

, Put 
LC

D
12  , we get denominator as zero 






































 at

a

t
at

aDLC

t

LC

t

L

E
cos

2
sin

1
               , cos

1
2

22
  











LC

t

L

CEt
cos

2
   (3) 

Thus the solution of (1) is .... IPFCq   

  

























LC

t

L

CEt

LC

t
c

LC

t
cq cos

2
sincos 21  (4) 

 when 0t , 00 1  cq  

  

















LC

t

L

CEt

LC

t
cq cos

2
sin    2   (5) 

Differentiating with respect to t , we get 

 

































LC

t

LC

t

LC

t

L

CE

LC

t

LC

c

dt

dq
sincos

2
cos2   (6) 

  when 0t , 
2

0
2

0 2
2 EC

c
L

CE

LC

c

dt

dq
  

Substituting 2c in (5), we get the required solution is  



























LC

t

LC

t

LC

tEC
q cossin 

2
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Unit-III 

PARTIAL DIFFERENTIAL DIFFERENTIAL EQUATIONS 

Introduction: 

 Partial differential equations arise in geometry, physics and in engineering branches 

when the number of independent variables in the given problem under discussion is two or 

more. In such cases any dependent variable is likely to be a function of more than one 

variables, so that it possesses not ordinary derivatives with respect to a single variable but 

partial derivatives with respect to several variables. For example, in the study of thermal 

effects in a solid body the temperature 𝑢 may vary from point to point in the solid as well as 

from time to time, and, as a consequence, the derivatives 
𝜕𝑢

𝜕𝑥
 ,

𝜕𝑢

𝜕𝑦
 ,

𝜕𝑢

𝜕𝑧
 ,

𝜕𝑢

𝜕𝑡
 , will, in general, be 

non zero. In general it may happen that higher derivatives of the types 
𝜕2𝑢

𝜕𝑥2  ,
𝜕2𝑢

𝜕𝑥𝜕𝑦
 ,

𝜕3𝑢

𝜕𝑥3 , etc. 

may be of physical significance.  

 When the laws of physics are applied to a problem of this kind, we may sometimes 

obtain a relation between the derivatives of the kind 

𝜙 (
𝜕𝑢

𝜕𝑥
 ,

𝜕𝑢

𝜕𝑦
 ,

𝜕2𝑢

𝜕𝑥2
 , … … ,

𝜕2𝑢

𝜕𝑥𝜕𝑦
) = 0 

Such an equation relating partial derivatives is called a “Partial Differential 

Equation”. 

Simply, a partial differential equation is an equation involving a function of two or 

more variables and some of its partial derivatives. Therefore a partial differential equation 

contains one dependent variable and more than one independent variable. Hence the main 

difference between partial and ordinary differential equations if the number of 

independent variables involved in the equations. 

Examples: 

1. 
𝜕2𝑢

𝜕𝑥2 =
𝜕𝑢

𝜕𝑦
where𝑢- dependent variable; 𝑥, 𝑦-independent variables. 

2. (
𝜕𝑢

𝜕𝑥
)

3

+
𝜕𝑢

𝜕𝑦
= 0where𝑢- dependent variable; 𝑥, 𝑦-independent variables. 

3. 𝑥
𝜕𝑢

𝜕𝑥
+ 𝑦

𝜕𝑢

𝜕𝑦
+

𝜕𝑢

𝜕𝑡
= 0where𝑢- dependent variable; 𝑥, 𝑦-independent variables. 
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 The order of a partial differential equation is the order of the highest partial 

derivative occurring in the equation. 

 In the above, example 1 is a second order equation in two variables, example 2 is a 

first order equation in two variables and example 3 is first order equation in three 

variables. 

 Now the students are able to understand what a partial differential equation is and 

how to identify whether a given differential equation is a partial differential or ordinary 

differential equation.  

 Now we are going to see how a partial differential equation is formed by using a 

given equation. Actually there are two methods to form a partial differential equation as 

given below. 

Formation of Partial Differential Equations: 

 In practice, there are two methods to form a partial differential equation. 

(i) By elimination of arbitrary constants 

(ii) By elimination of arbitrary functions 

Formation of Partial Differential Equations by Elimination of Arbitrary Constants: 

 Let 𝑓(𝑥, 𝑦, 𝑧, 𝑎, 𝑏) = 0                    (1) 

be an equation which contains two arbitrary constants ‘𝑎’ and ‘𝑏’. We know that, to 

eliminate two constants we need atleast three equations. Therefore partially differentiating 

equation (1) with respect to 𝑥 and 𝑦 we get two more equations. From these three 

equations we can eliminate the two constants  ‘𝑎’ and ‘𝑏’. Similarly, for eliminating three 

constants we need four equations and so on.  

Note 1: If the number of arbitrary constants to be eliminated is equal to the number of 

independent variables, elimination of constants gives a first order partial differential 

equation. If the number of arbitrary constants to be eliminated is greater than the number 

of independent variables, then the elimination of constants gives a second or higher order 

partial differential equations. 

Note 2: In this chapter we use the following notations. 

𝑝 =
𝜕𝑧

𝜕𝑥
 , 𝑞 =

𝜕𝑧

𝜕𝑦
 , 𝑟 =

𝜕2𝑧

𝜕𝑥2
 , 𝑠 =

𝜕2𝑧

𝜕𝑥𝜕𝑦
and 𝑡 =

𝜕2𝑧

𝜕𝑦2
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EXAMPLES 

1. Form the partial differential equation by eliminating the arbitrary constants from  

𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑎2 + 𝑏2 . 

Solution: Given 𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑎2 + 𝑏2          (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑎            (2) 

𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑏          (3) 

From equations (2) and (3), we get 

𝑎 = 𝑝 and 𝑏 = 𝑞 

Substituting these values of 𝑎 and 𝑏 in (1), we get 

𝑧 = 𝑝𝑥 + 𝑞𝑦 + 𝑝2 + 𝑞2 

This is the required partial differential equation. 

2. Form the partial differential equation by eliminating the arbitrary constants from  

𝑧 = (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + 1. 

Solution: Given 𝑧 = (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + 1          (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

𝑝 =
𝜕𝑧

𝜕𝑥
= 2(𝑥 − 𝑎)            (2) 

𝑞 =
𝜕𝑧

𝜕𝑦
= 2(𝑦 − 𝑏)          (3) 

From equations (2) and (3), we get 

𝑎 = 𝑥 −
𝑝

2
and 𝑏 = 𝑦 −

𝑞

2
 

Substituting these values of 𝑎 and 𝑏 in (1), we get 
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         𝑧 = (
𝑝

2
)

2

+ (
𝑞

2
)

2

+ 1 

4𝑧 = 𝑝2 + 𝑞2 + 4 

This is the required partial differential equation. 

3. Form the partial differential equation by eliminating the arbitrary constants from  

𝑧 = (𝑥2 + 𝑎)(𝑦2 + 𝑏). 

Solution: Given 𝑧 = (𝑥2 + 𝑎)(𝑦2 + 𝑏)          (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

𝑝 =
𝜕𝑧

𝜕𝑥
= 2𝑥(𝑦2 + 𝑏)            (2) 

𝑞 =
𝜕𝑧

𝜕𝑦
= 2𝑦(𝑥2 + 𝑎)          (3) 

From equations (2) and (3), we get 

𝑦2 + 𝑏 =
𝑝

2𝑥
                          (4) 

and𝑥2 + 𝑎 =
𝑞

2𝑦
                                  (5) 

Substituting (4) and (5) in (1), we get 

         𝑧 = (
𝑝

2𝑥
) (

𝑞

2𝑦
)      or  𝑝𝑞 = 4𝑥𝑦𝑧 

This is the required partial differential equation. 

4. Find the differential equation of all spheres of radius 5 having their centre’s in the 𝒙𝒚-

plane. 

Solution: The equation of the given spheres is  

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + 𝑧2 = 25                                 (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

2(𝑥 − 𝑎) + 2𝑧𝑝 = 0 ⇒  𝑥 − 𝑎 = −𝑧𝑝                      (2) 

2(𝑦 − 𝑏) + 2𝑧𝑞 = 0 ⇒  𝑦 − 𝑏 = −𝑧𝑞                      (3) 
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Substituting (2) and (3) in (1), we get 

𝑧2𝑝2 + 𝑧2𝑞2 + 𝑧2 = 25 

𝑧2(𝑝2 + 𝑞2 + 1) = 25 

This is the required partial differential equation. 

5. Form the partial differential equation by eliminating the constants from 

𝒛 = 𝒂𝒙𝒆𝒚 +
𝟏

𝟐
𝒂𝟐𝒆𝟐𝒚 + 𝒃. 

Solution: Given      𝑧 = 𝑎𝑥𝑒𝑦 +
1

2
𝑎2𝑒2𝑦 + 𝑏                                                        (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

𝜕𝑧

𝜕𝑥
= 𝑝 = 𝑎𝑒𝑦 ⇒ 𝑎 =

𝑝

𝑒𝑦
                                           (2) 

𝜕𝑧

𝜕𝑦
= 𝑞 = 𝑎𝑥𝑒𝑦 +

1

2
𝑎2𝑒2𝑦(2) 

                                     𝑖. 𝑒. ,
𝜕𝑧

𝜕𝑦
=

𝑝

𝑒𝑦
𝑥𝑒𝑦 + (

𝑝

𝑒𝑦
)

2

𝑒2𝑦 , using (1) 

                                     𝑖. 𝑒. ,   𝑞 = 𝑝𝑥 + 𝑝2 

This is the required partial differential equation. 

6. Form the partial differential equation by eliminating the constants ‘𝒂’ and ‘𝒃’ from 

𝒛 = 𝒂 𝒍𝒐𝒈 [
𝒃(𝒚 − 𝟏)

𝟏 − 𝒙
]. 

Solution: Given      𝑧 = 𝑎𝑙𝑜𝑔 [
𝑏(𝑦−1)

1−𝑥
]                                                        (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

𝜕𝑧

𝜕𝑥
= 𝑝 = 𝑎 [

1 − 𝑥

𝑏(𝑦 − 1)
] . 𝑏(𝑦 − 1) [

−1

(1 − 𝑥)2
] (−1) 

                                𝑖. 𝑒., 𝑝 =
𝑎

1 − 𝑥
 ⇒ 𝑎 = 𝑝(1 − 𝑥)                       (2) 

𝜕𝑧

𝜕𝑦
= 𝑞 = 𝑎 [

1 − 𝑥

𝑏(𝑦 − 1)
]

𝑏

1 − 𝑥
=

𝑎

𝑦 − 1
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                                𝑖. 𝑒. ,       𝑎 = 𝑞(𝑦 − 1)                                                 (3) 

From (2) and (3), we get 

                               𝑝(1 − 𝑥) = 𝑞(𝑦 − 1)or                𝑝𝑥 + 𝑞𝑦 = 𝑝 + 𝑞 

This is the required partial differential equation. 

7. Form the partial differential equation by eliminating the constants ‘𝒂’ and ‘𝒃’ from 

𝟐𝒛 = (𝒙 + 𝒂)𝟏/𝟐 + (𝒚 − 𝒂)𝟏/𝟐 + 𝒃. 

Solution: Given      2𝑧 = (𝑥 + 𝑎)1/2 + (𝑦 − 𝑎)1/2 + 𝑏                  (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

                             2 
𝜕𝑧

𝜕𝑥
=

1

2√𝑥 + 𝑎
   ⇒   2𝑝 =

1

2√𝑥 + 𝑎
 

                             𝑖. 𝑒., √𝑥 + 𝑎 =
1

4𝑝
                                           (2) 

                             2 
𝜕𝑧

𝜕𝑦
=

1

2√𝑦 − 𝑎
   ⇒   2𝑞 =

1

2√𝑦 − 𝑎
 

                             𝑖. 𝑒., √𝑦 − 𝑎 =
1

4𝑞
                                           (3) 

From(2),     𝑥 + 𝑎 =
1

16𝑝2
   ⇒   𝑎 =

1

16𝑝2
− 𝑥                          (4) 

From(3),     𝑦 − 𝑎 =
1

16𝑞2
   ⇒   𝑎 = 𝑦 −

1

16𝑞2
                          (5) 

From (4) and (5), we get 

                        𝑥 + 𝑦 =
1

16
(

1

𝑝2
+

1

𝑞2
) or

1

𝑝2
+

1

𝑞2
= 16(𝑥 + 𝑦) 

This is the required partial differential equation. 

 

8. Form the partial differential equation by eliminating the constants ‘𝒂’ and ‘𝒃’ from 

(𝒙 − 𝒂)𝟐 + (𝒚 − 𝒃)𝟐 = 𝒛𝟐𝒄𝒐𝒕𝟐𝜶. 
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Solution: Given      (𝑥 + 𝑎)2 + (𝑦 − 𝑏)2 = 𝑧2𝑐𝑜𝑡2𝛼                  (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

                 2(𝑥 − 𝑎) = 2𝑧 
𝜕𝑧

𝜕𝑥
𝑐𝑜𝑡2𝛼  ⇒   𝑥 − 𝑎 = 𝑧 𝑝𝑐𝑜𝑡2𝛼      (2) 

                 2(𝑦 − 𝑏) = 2𝑧 
𝜕𝑧

𝜕𝑦
𝑐𝑜𝑡2𝛼  ⇒   𝑦 − 𝑏 = 𝑧 𝑞𝑐𝑜𝑡2𝛼      (3) 

Using (2) and (3) in (1), we get 

𝑧2𝑝2𝑐𝑜𝑡4𝛼 + 𝑧2𝑞2𝑐𝑜𝑡4𝛼 = 𝑧2𝑐𝑜𝑡2𝛼                 ⇒   𝑝2 + 𝑞2 = 𝑡𝑎𝑛2𝛼 

This is the required partial differential equation. 

9. Find the partial differential equation of all planes having equal intercepts on the  𝒙 and𝒚 

axis. 

Solution: The equation of such plane is  

𝑥

𝑎
+

𝑦

𝑎
+

𝑧

𝑏
= 1                                      (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

1

𝑎
+

𝑝

𝑏
= 0  ⇒   𝑝 = −

𝑏

𝑎
                   (2) 

1

𝑎
+

𝑞

𝑏
= 0  ⇒   𝑞 = −

𝑏

𝑎
                   (3) 

From (2) and (3), we get                               𝑝 = 𝑞 

This is the required partial differential equation. 

10. Form the partial differential equation by eliminating the constants ‘𝒂’ and ‘𝒃’ from 

𝒛 = 𝒂𝒙𝒏 + 𝒃𝒚𝒏. 

Solution: Given      𝑧 = 𝑎𝑥𝑛 + 𝑏𝑦𝑛                                    (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

                           𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑎 𝑛𝑥𝑛−1   ⇒   𝑎 =

𝑝

𝑛𝑥𝑛−1
     (2) 
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                           𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑏 𝑛𝑦𝑛−1   ⇒   𝑏 =

𝑞

𝑛𝑦𝑛−1
     (3) 

Substituting (2) and (3) in (1), we get 

                           𝑧 =
𝑝

𝑛𝑥𝑛−1
𝑥𝑛 +

𝑞

𝑛𝑦𝑛−1
𝑦𝑛 

                           𝑧 =
1

𝑛
(𝑝𝑥 + 𝑞𝑦) 

This is the required  partial differential equation. 

11. Form the partial differential equation by eliminating the constants ‘𝒂’ and ‘𝒃’ from 

(𝒙 − 𝒂)𝟐 + (𝒚 − 𝒃)𝟐 + 𝒛𝟐 = 𝟏. 

Solution: Given      (𝑥 + 𝑎)2 + (𝑦 − 𝑏)2 + 𝑧2 = 1                          (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

                 2(𝑥 − 𝑎) + 2𝑧 
𝜕𝑧

𝜕𝑥
= 0  ⇒   𝑥 − 𝑎 = −𝑧 𝑝      (2) 

                 2(𝑦 − 𝑏) + 2𝑧 
𝜕𝑧

𝜕𝑦
= 0  ⇒   𝑦 − 𝑏 = −𝑧 𝑞      (3) 

Substituting (2) and (3) in (1), we get 

𝑧2𝑝2 + 𝑧2𝑞2 + 𝑧2 = 1 

𝑝2 + 𝑞2 + 1 =
1

𝑧2
 

This is the required partial differential equation. 

12.  Derive a partial differential equation by eliminating the constants from the equation 

𝟐𝒛 =
𝒙𝟐

𝒂𝟐
+

𝒚𝟐

𝒃𝟐
 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given     2𝑧 =
𝑥2

𝑎2
+

𝑦2

𝑏2
                              (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 
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                2 
𝜕𝑧

𝜕𝑥
=

2𝑥

𝑎2
  ⇒   

1

𝑎2
=

1

𝑥

𝜕𝑧

𝜕𝑥
=

𝑝

𝑥
                (2) 

                2 
𝜕𝑧

𝜕𝑦
=

2𝑦

𝑏2
  ⇒   

1

𝑏2
=

1

𝑦

𝜕𝑧

𝜕𝑦
=

𝑞

𝑦
                (3) 

Substituting (2) and (3) in (1), we get 

 2𝑧 = 𝑥𝑝 + 𝑦𝑞 

This is the required partial differential equation. 

 

13. Find the differential equation of all spheres of the same radius ‘𝒄’ having their centres on 

the 𝒚𝒛-plane. 

Solution: The equation of spheres whose radius is  ‘𝑐’ and the centres (0, 𝑎, 𝑏) lies on 𝑦𝑧-

plane is 

𝑥2 + (𝑦 − 𝑎)2 + (𝑧 − 𝑏)2 = 𝑐2                          (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 

                 2𝑥 + 2(𝑧 − 𝑏)
𝜕𝑧

𝜕𝑥
= 0  ⇒   𝑧 − 𝑏 = −

𝑥

𝑝
                      (2) 

                 2(𝑦 − 𝑎) + 2(𝑧 − 𝑏)
𝜕𝑧

𝜕𝑦
= 0  ⇒   𝑦 − 𝑎 =

𝑞𝑥

𝑝
(3)   (using(2)) 

Substituting (2) and (3) in (1), we get 

𝑥2 + (
𝑞𝑥

𝑝
)

2

+ (−
𝑥

𝑝
)

2

= 𝑐2   𝑖. 𝑒. ,       𝑥2(1 + 𝑝2 + 𝑞2) = 𝑐2𝑝2 

This is the required partial differential equation. 

14. Find the differential equation of all spheres whose centres lie on the 𝒛-axis. 

Solution: The equation of such spheres is 

𝑥2 + 𝑦2 + (𝑧 − 𝑐)2 = 𝑟2                          (1)  

where𝑟, 𝑐 are constats 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 
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                 2𝑥 + 2(𝑧 − 𝑐)
𝜕𝑧

𝜕𝑥
= 0  ⇒   𝑧 − 𝑐 = − 

𝑥

𝑝
                      (2) 

                 2𝑦 + 2(𝑧 − 𝑐)
𝜕𝑧

𝜕𝑦
= 0  ⇒   𝑧 − 𝑐 = −

𝑦

𝑞
(3) 

From (2) and (3), we get 

𝑥

𝑝
=

𝑦

𝑞
  , 𝑖. 𝑒. ,   𝑞𝑥 = 𝑝𝑦 

This is the required partial differential equation. 

15.  Derive a partial differential equation by eliminating the constants 𝒂 and 𝒃 from 

𝒍𝒐𝒈(𝒂𝒛 − 𝟏) = 𝒙 + 𝒂𝒚 + 𝒃 . 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given     𝑙𝑜𝑔(𝑎𝑧 − 1) = 𝑥 + 𝑎𝑦 + 𝑏                              (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 

𝑎

𝑎𝑧 − 1
 𝑝 = 1                         (2) 

and
𝑎

𝑎𝑧 − 1
 𝑞 = 𝑎                (3) 

From (2) and (3), we get 

                               𝑎 =
1

𝑧 − 𝑝
(4)and  𝑎𝑧 − 1 = 𝑞       (5) 

Substituting (4) in (5), we get 

𝑞 =
𝑧

𝑧 − 𝑝
− 1 or 𝑞(𝑧 − 𝑝) = 𝑝  or  𝑝(𝑞 + 1) = 𝑧𝑞 

This is the required partial differential equation. 

16.  Form the partial differential equation by eliminating the constants from the equation 

𝒙𝟐

𝒂𝟐
+

𝒚𝟐

𝒃𝟐
+

𝒛𝟐

𝒄𝟐
= 𝟏. 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: Given     
𝑥2

𝑎2
+

𝑦2

𝑏2
+

𝑧2

𝑐2
= 1                              (1) 

Partially differentiating (1) with respect to ‘𝑥’ and ‘𝑦’, we get 
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2𝑥

𝑎2
+

2𝑧

𝑐2
 𝑝 = 0                  (2) 

2𝑦

𝑏2
+

2𝑧

𝑐2
 𝑞 = 0                  (3) 

Partially differentiating equation (2) with respect to 𝑥, we get 

2

𝑎2
+

2

𝑐2
(𝑧𝑟 + 𝑝2) = 0      

𝑐2

𝑎2
+  (𝑧𝑟 + 𝑝2) = 0             (4) 

From equation (2), we get 

𝑐2

𝑎2
= −

𝑝𝑧

𝑥
                   (5) 

Substituting (5) in (4), we get 

       −
𝑝𝑧

𝑥
+ (𝑧𝑟 + 𝑝2) = 0𝑖. 𝑒., 𝑧𝑥𝑟 + 𝑥𝑝2 − 𝑧𝑝 = 0 

This is the required partial differential equation. 

 

 

Formation of partial differential equations by elimination of arbitrary functions: 

 Formation of partial differential equations by elimination of arbitrary functions 

from the given relation is explained in the following examples. 

Note: The elimination of one arbitrary function from a given relation gives a partial 

differential equation of first order while elimination of two arbitrary functions from a given 

relation gives a second or higher order partial differential equations. 

 

EXAMPLES 

17. Form the partial differential equation by eliminating the arbitrary function ‘𝒇’ from  

𝒛 = 𝒆𝒂𝒙+𝒃𝒚𝒇(𝒂𝒙 − 𝒃𝒚). 
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Solution: Given         𝑧 = 𝑒𝑎𝑥+𝑏𝑦𝑓(𝑎𝑥 − 𝑏𝑦)                     (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑒𝑎𝑥+𝑏𝑦𝑓′(𝑎𝑥 − 𝑏𝑦) . 𝑎 + 𝑎𝑒𝑎𝑥+𝑏𝑦𝑓(𝑎𝑥 − 𝑏𝑦) 

                 𝑝 = 𝑎𝑒𝑎𝑥+𝑏𝑦𝑓′(𝑎𝑥 − 𝑏𝑦) + 𝑎𝑧 

                 ⇒   𝑓′(𝑎𝑥 − 𝑏𝑦) =
𝑝 − 𝑎𝑧

𝑎𝑒𝑎𝑥+𝑏𝑦
                               (2) 

𝑎𝑛𝑑          𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑒𝑎𝑥+𝑏𝑦𝑓′(𝑎𝑥 − 𝑏𝑦) . (−𝑏) + 𝑏𝑒𝑎𝑥+𝑏𝑦𝑓(𝑎𝑥 − 𝑏𝑦) 

                  𝑞 = −𝑏 (
𝑝 − 𝑎𝑧

𝑎
) + 𝑏𝑧   using (2) 

                 𝑎𝑞 = −𝑝𝑏 + 𝑎𝑏𝑧 + 𝑎𝑏𝑧 

                 𝑝𝑏 + 𝑎𝑞 = 2𝑎𝑏𝑧 

This is the required partial differential equation. 

18. Form the partial differential equation by eliminating the arbitrary function from  

𝒛 = (𝒙 + 𝒚) 𝝓(𝒙𝟐 − 𝒚𝟐). 

Solution: Given         𝑧 = (𝑥 + 𝑦) 𝜙(𝑥2 − 𝑦2)                     (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= (𝑥 + 𝑦)𝜙′(𝑥2 − 𝑦2) .2𝑥 + 𝜙(𝑥2 − 𝑦2) 

            ⇒ 𝑝 = 2𝑥 (𝑥 + 𝑦)𝜙′(𝑥2 − 𝑦2) +
𝑧

𝑥 + 𝑦
 

            ⇒ 𝑝 −
𝑧

𝑥 + 𝑦
= 2𝑥 (𝑥 + 𝑦)𝜙′(𝑥2 − 𝑦2)                (2) 

and          𝑞 =
𝜕𝑧

𝜕𝑦
= (𝑥 + 𝑦)𝜙′(𝑥2 − 𝑦2) . −2𝑦 + 𝜙(𝑥2 − 𝑦2) 

            ⇒ 𝑞 = −2𝑦 (𝑥 + 𝑦)𝜙′(𝑥2 − 𝑦2) +
𝑧

𝑥 + 𝑦
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            ⇒ 𝑞 −
𝑧

𝑥 + 𝑦
= −2𝑦 (𝑥 + 𝑦)𝜙′(𝑥2 − 𝑦2)            (3) 

Division gives
𝑝 −

𝑧

𝑥+𝑦

𝑞 −
𝑧

𝑥+𝑦

= −
𝑥

𝑦
 

             ⇒  [𝑝(𝑥 + 𝑦) − 𝑧]𝑦 + [𝑞(𝑥 + 𝑦) − 𝑧]𝑥 = 0 

             ⇒  (𝑥 + 𝑦)(𝑝𝑦 + 𝑞𝑥) − 𝑧(𝑥 + 𝑦) = 0 

             ⇒  𝑝𝑦 + 𝑞𝑥 = 𝑧 

This is the required partial differential equation. 

19. Form the partial differential equation by eliminating the arbitrary functions from  

𝒛 = 𝒇(𝒙 + 𝒂𝒕) + 𝒈(𝒙 − 𝒂𝒕). 

Solution: Given         𝑧 = 𝑓(𝑥 + 𝑎𝑡) + 𝑔(𝑥 − 𝑎𝑡)                     (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑡’, we get 

𝜕𝑧

𝜕𝑥
= 𝑓′(𝑥 + 𝑎𝑡) +  𝑔′(𝑥 − 𝑎𝑡),   

𝜕2𝑧

𝜕𝑥2
= 𝑓′′(𝑥 + 𝑎𝑡) +  𝑔′′(𝑥 − 𝑎𝑡)         (2) 

𝜕𝑧

𝜕𝑡
= 𝑎 𝑓′(𝑥 + 𝑎𝑡) − 𝑎 𝑔′(𝑥 − 𝑎𝑡) 

and
𝜕2𝑧

𝜕𝑡2
= 𝑎2𝑓′′(𝑥 + 𝑎𝑡) + 𝑎2𝑔′′(𝑥 − 𝑎𝑡) = 𝑎2

𝜕2𝑧

𝜕𝑥2
From(2) 

thus the required partial differential equation is  

𝜕2𝑧

𝜕𝑡2
= 𝑎2

𝜕2𝑧

𝜕𝑥2
 

Which is an equation of the second order and (1) is its solution. 

20. Form the partial differential equation by eliminating the arbitrary function ‘𝒇’ from  

𝒛 =  𝒇(𝒙𝟐 − 𝒚𝟐). 

Solution: Given         𝑧 = 𝑓(𝑥2 − 𝑦2)                     (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 
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                 𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑓′(𝑥2 − 𝑦2) .2𝑥 

            ⇒
𝑝

2𝑥
=  𝑓′(𝑥2 − 𝑦2)                                    (2) 

and          𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑓′(𝑥2 − 𝑦2) . −2𝑦 

            ⇒  −
𝑞

2𝑦
= 𝑓′(𝑥2 − 𝑦2)                               (3) 

From (2) and (3), we get 

𝑝

2𝑥
= −

𝑞

2𝑦
  ⇒   𝑝𝑦 + 𝑞𝑥 = 0 

This is the required partial differential equation. 

21. Form the partial differential equation by eliminating the arbitrary functions from  

𝒛 = 𝒇(𝒙) + 𝒆𝒚𝒈(𝒙). 

Solution: Given         𝑧 = 𝑓(𝑥) + 𝑒𝑦𝑔(𝑥)                     (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑓′(𝑥) + 𝑒𝑦𝑔′(𝑥)                          (2) 

                 𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑒𝑦𝑔(𝑥)                                            (3) 

From (3), we get 

𝜕2𝑧

𝜕𝑦2
= 𝑒𝑦𝑔(𝑥) =

𝜕𝑧

𝜕𝑦
From(3) 

Therefore the required partial differential equation is    
𝜕2𝑧

𝜕𝑦2 =
𝜕𝑧

𝜕𝑦
 

22. Eliminate 𝒇𝟏𝐚𝐧𝐝𝒇𝟐from 𝒛 = 𝒇𝟏(𝒙)𝒇𝟐(𝒚). 

Solution: Given  𝑧 = 𝑓1(𝑥)𝑓2(𝑦)                        (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 
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                 𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑓1

′(𝑥)𝑓2(𝑦)                           (2) 

                 𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑓1(𝑥)𝑓2

′(𝑦)                           (3) 

Differentiating (3) with respect to ‘𝑥’ we get 

                 𝑠 =
𝜕2𝑧

𝜕𝑥 𝜕𝑦
= 𝑓1

′(𝑥)𝑓2
′(𝑦)                   (4) 

(2) × (3)  ⇒   𝑝𝑞 = 𝑓1
′(𝑥)𝑓2(𝑦). 𝑓1(𝑥)𝑓2

′(𝑦) 

                 ⇒   𝑝𝑞 = 𝑠 𝑧 ,   Using (1) and (4) 

This is the required partial differential equation. 

23. Form the partial differential equation by eliminating 𝒇 𝒂𝒏𝒅𝝓from  𝒛 = 𝒇(𝒚) + 𝝓(𝒙 +

𝒚 + 𝒛). 

Solution: Given   𝑧 = 𝑓(𝑦) + 𝜙(𝑥 + 𝑦 + 𝑧)(1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= 𝜙′(𝑥 + 𝑦 + 𝑧). (1 + 𝑝)                                                                   (2) 

                 𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑓′(𝑦) + 𝜙′(𝑥 + 𝑦 + 𝑧). (1 + 𝑞)                                                   (3) 

                 𝑟 =
𝜕2𝑧

𝜕𝑥2
= 𝜙′(𝑥 + 𝑦 + 𝑧). 𝑟 + 𝜙′′(𝑥 + 𝑦 + 𝑧). (1 + 𝑝)2                          (4) 

                 𝑠 =
𝜕2𝑧

𝜕𝑥 𝜕𝑦
= 𝜙′(𝑥 + 𝑦 + 𝑧). 𝑠 + 𝜙′′(𝑥 + 𝑦 + 𝑧). (1 + 𝑝)(1 + 𝑞)           (5) 

                 𝑡 =
𝜕2𝑧

𝜕𝑦2
= 𝑓′′(𝑦) + 𝜙′(𝑥 + 𝑦 + 𝑧). 𝑡 + 𝜙′′(𝑥 + 𝑦 + 𝑧). (1 + 𝑞)2          (6) 

From (4),                  𝑟[1 − 𝜙′(𝑥 + 𝑦 + 𝑧)] = (1 + 𝑝)2𝜙′′(𝑥 + 𝑦 + 𝑧)                                       (7) 

From (5),                  𝑠[1 − 𝜙′(𝑥 + 𝑦 + 𝑧)] = (1 + 𝑝)(1 + 𝑞)𝜙′′(𝑥 + 𝑦 + 𝑧)                         (8) 

Now        
(7)

(8)
  ⇒  

𝑟

𝑠
=

1 + 𝑝

1 + 𝑞
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This is the required partial differential equation. 

24. Eliminate the arbitrary function 𝒇 from 𝒛 = 𝒇 (
𝒙𝒚

𝒛
) and form the partial differential 

equation. 

Solution:  Given   𝑧 = 𝑓 (
𝑥𝑦

𝑧
)                                 (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑓′ (

𝑥𝑦

𝑧
) .

𝑧𝑦 − 𝑥𝑦. 𝑝

𝑧2
             (2) 

                 𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑓′ (

𝑥𝑦

𝑧
) .

𝑧𝑥 − 𝑥𝑦. 𝑞

𝑧2
             (3) 

Now        
(2)

(3)
  ⇒

𝑝

𝑞
=

𝑧𝑦 − 𝑥𝑦. 𝑝

𝑧𝑥 − 𝑥𝑦. 𝑞
   ⇒    𝑝𝑥 = 𝑞𝑦 

This is the required partial differential equation. 

25. Form the partial differential equation by eliminating the arbitrary functions 𝒇 and 𝒈from 

𝒛 = 𝒇(𝟐𝒙 + 𝒚) + 𝒈(𝟑𝒙 − 𝒚). 

Solution:  Given   𝑧 = 𝑓(2𝑥 + 𝑦) + 𝑔(3𝑥 − 𝑦)   (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’, we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= 2 𝑓′(2𝑥 + 𝑦) + 3 𝑔′(3𝑥 − 𝑦) 

(Or)         𝑝 = 2 𝑓′ + 3 𝑔′                                       (2) 

Where 𝑓′ means 𝑓′(2𝑥 + 𝑦) and 𝑔′ means  𝑔′(3𝑥 − 𝑦) 

and          𝑞 =
𝜕𝑧

𝜕𝑦
= 𝑓′(2𝑥 + 𝑦) − 𝑔′(3𝑥 − 𝑦) 

(Or)         𝑞 = 𝑓′ − 𝑔′                                              (3) 

From(2), 𝑟 =
𝜕2𝑧

𝜕𝑥2
= 4 𝑓′′ + 9 𝑔′′            (4) 

Where 𝑓′′  means 𝑓′′(2𝑥 + 𝑦) and 𝑔′′ means  𝑔′′(3𝑥 − 𝑦) 
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From(2), 𝑠 =
𝜕2𝑧

𝜕𝑥 𝜕𝑦
= 2 𝑓′′ − 3 𝑔′′            (5) 

From(3), 𝑡 =
𝜕2𝑧

𝜕𝑦2
= 𝑓′′ + 𝑔′′                       (6) 

Eliminating 𝑓′′ and 𝑔′′ from (4), (5) and (6), we get 

|
4 9 𝑟
2 −3 𝑠
1 1 𝑡

| = 0       [Using determinant] 

𝑖. 𝑒., 4(−3𝑡 − 𝑠) − 9(2𝑡 − 𝑠) + 𝑟(2 + 3) = 0   

𝑖. 𝑒. ,                      −12𝑡 − 4𝑠 − 18𝑡 + 9𝑠 + 5𝑟 = 0 

𝑖. 𝑒. ,                                                5𝑟 + 5𝑠 − 30𝑡 = 0 

𝑖. 𝑒. ,                                  
𝜕2𝑧

𝜕𝑥2
+  

𝜕2𝑧

𝜕𝑥 𝜕𝑦
− 6 

𝜕2𝑧

𝜕𝑦2
= 0 

This is the required partial differential equation. 

26. Form the partial differential equation by eliminating the arbitrary function 𝒈 from the 

relation 𝒛 = 𝒚𝟐 + 𝟐 𝒈 (
𝟏

𝒙
+ 𝒍𝒐𝒈 𝒚). 

Solution: Given   𝑧 = 𝑦2 + 2 𝑔 (
1

𝑥
+ 𝑙𝑜𝑔 𝑦)               (1) 

Here we have to eliminate the only arbitrary function 𝑔. 

For, differentiating partially (1) with respect to ‘𝑥’ and ‘𝑦’ we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= 2 𝑔′ (

1

𝑥
+ 𝑙𝑜𝑔 𝑦) . (

−1

𝑥2
) 

𝑖. 𝑒. ,          𝑝 =
−2

𝑥2
𝑔′ (

1

𝑥
+ 𝑙𝑜𝑔 𝑦) 

𝑖. 𝑒. ,          2 𝑔′ (
1

𝑥
+ 𝑙𝑜𝑔 𝑦) = −𝑝 𝑥2                              (2) 

and          𝑞 =
𝜕𝑧

𝜕𝑦
= 2𝑦 + 2 𝑔′ (

1

𝑥
+ 𝑙𝑜𝑔 𝑦) . (

1

𝑦
) 

𝑖. 𝑒. ,          𝑞 = 2𝑦 +
2

𝑦
𝑔′ (

1

𝑥
+ 𝑙𝑜𝑔 𝑦)                           (3) 
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𝑖. 𝑒. ,          𝑞 = 2𝑦 −
𝑝 𝑥2

𝑦
Using  (2) 

𝑖. 𝑒. ,          𝑝 𝑥2 + 𝑞𝑦 = 2𝑦2 

This is the required partial differential equation. 

27. Form the partial differential equation by eliminating the arbitrary function 𝛟 from 

𝒙𝒚𝒛 = 𝝓(𝒙𝟐 + 𝒚𝟐 − 𝒛𝟐). 

Solution: Given   𝑥𝑦𝑧 = 𝜙(𝑥2 + 𝑦2 − 𝑧2)         (1) 

This equation contains only one arbitrary function 𝜙 and we have to eliminate it. 

For, differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’ we get 

                 𝑦𝑧 + 𝑥𝑦𝑝 =  𝜙′(𝑥2 + 𝑦2 − 𝑧2). (2𝑥 − 2𝑧𝑝) 

and𝑥𝑧 + 𝑥𝑦𝑞 =  𝜙′(𝑥2 + 𝑦2 − 𝑧2). (2𝑦 − 2𝑧𝑞) 

⇒      𝜙′(𝑥2 + 𝑦2 − 𝑧2) =
𝑦𝑧 + 𝑥𝑦𝑝

2𝑥 − 2𝑧𝑝
                        (2) 

and𝜙′(𝑥2 + 𝑦2 − 𝑧2) =
𝑥𝑧 + 𝑥𝑦𝑞

2𝑦 − 2𝑧𝑞
                        (3) 

From (2) and (3), we get 

𝑦𝑧 + 𝑥𝑦𝑝

2𝑥 − 2𝑧𝑝
=

𝑥𝑧 + 𝑥𝑦𝑞

2𝑦 − 2𝑧𝑞
 

𝑖. 𝑒. ,                    (𝑦𝑧 + 𝑥𝑦𝑝)(2𝑦 − 2𝑧𝑞) = (𝑥𝑧 + 𝑥𝑦𝑞)(2𝑥 − 2𝑧𝑝) 

𝑖. 𝑒. ,                         𝑦 (𝑧 + 𝑥𝑝)(𝑦 − 𝑧𝑞) = 𝑥 (𝑧 + 𝑦𝑞)(𝑥 − 𝑧𝑝) 

𝑖. 𝑒., 𝑝𝑥 (𝑦2 + 𝑧2) − 𝑞𝑦 (𝑥2 + 𝑧2) = 𝑧 (𝑥2 − 𝑦2) 

This is the required partial differential equation. 

28. Form the partial differential equation by eliminating the arbitrary functions from  

𝒛 = 𝒙 𝒇𝟏(𝒙 + 𝒕) + 𝒇𝟐(𝒙 + 𝒕). 

Solution:   Given  𝑧 = 𝑥 𝑓1(𝑥 + 𝑡) + 𝑓2(𝑥 + 𝑡)               (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’ we get 
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𝜕𝑧

𝜕𝑥
= 𝑥 𝑓1

′(𝑥 + 𝑡) + 𝑓1(𝑥 + 𝑡) + 𝑓2
′(𝑥 + 𝑡)            (2) 

𝜕𝑧

𝜕𝑡
= 𝑥 𝑓1

′(𝑥 + 𝑡) + 𝑓2
′(𝑥 + 𝑡)                                    (3) 

𝜕2𝑧

𝜕𝑥2
= 𝑥 𝑓1

′′(𝑥 + 𝑡) + 2𝑓1
′(𝑥 + 𝑡) + 𝑓2

′′(𝑥 + 𝑡)            (4) 

𝜕2𝑧

𝜕𝑡2
= 𝑥 𝑓1

′′(𝑥 + 𝑡) + 𝑓2
′′(𝑥 + 𝑡)                                         (5) 

𝜕2𝑧

𝜕𝑥 𝜕𝑡
= 𝑥 𝑓1

′′(𝑥 + 𝑡) + 𝑓1
′(𝑥 + 𝑡) + 𝑓2

′′(𝑥 + 𝑡) 

𝑖. 𝑒. ,   
𝜕2𝑧

𝜕𝑥 𝜕𝑡
=

𝜕2𝑧

𝜕𝑡2
+ 𝑓1

′(𝑥 + 𝑡)[Using (5)]                                  (6)   

Substituting (5) in (4), we get 

𝜕2𝑧

𝜕𝑥2
=

𝜕2𝑧

𝜕𝑡2
+ 2 𝑓1

′(𝑥 + 𝑡) 

𝑖. 𝑒. ,      
𝜕2𝑧

𝜕𝑥2
=

𝜕2𝑧

𝜕𝑡2
+ 2 [

𝜕2𝑧

𝜕𝑥 𝜕𝑡
−

𝜕2𝑧

𝜕𝑡2
]           [Using(6)] 

𝑖. 𝑒. ,      
𝜕2𝑧

𝜕𝑥2
= 2

𝜕2𝑧

𝜕𝑥 𝜕𝑡
−

𝜕2𝑧

𝜕𝑡2
 

This is the required partial differential equation. 

29. Form the partial differential equation by eliminating arbitrary function from 

𝒛 = 𝒆𝒎𝒚𝒇(𝒙 − 𝒚). 

Solution: Given  𝑧 = 𝑒𝑚𝑦𝑓(𝑥 − 𝑦)                        (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’ we get 

              𝑝 =
𝜕𝑧

𝜕𝑥
= 𝑒𝑚𝑦𝑓′(𝑥 − 𝑦)                            (2) 

              𝑞 =  
𝜕𝑧

𝜕𝑦
= −𝑒𝑚𝑦𝑓′(𝑥 − 𝑦) + 𝑚𝑒𝑚𝑦𝑓(𝑥 − 𝑦) 

𝑖. 𝑒. ,      𝑞 = −𝑝 + 𝑚𝑒𝑚𝑦𝑓(𝑥 − 𝑦)        [Using (2)] 
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𝑖. 𝑒. ,      𝑝 + 𝑞 = 𝑚𝑧                                  [Using (1)] 

This is the required partial differential equation. 

 

30. Form the partial differential equation by eliminating the arbitrary functions ‘𝒇’ and ‘𝒈’ 

from 𝒛 = 𝒙𝟐𝒇(𝒚) + 𝒚𝟐𝒈(𝒙). 

Solution:  Given   𝑧 = 𝑥2𝑓(𝑦) + 𝑦2𝑔(𝑥)                        (1) 

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’ we get 

                 𝑝 =
𝜕𝑧

𝜕𝑥
= 2𝑥 𝑓 + 𝑦2𝑔′                            (2) 

                 𝑞 =  
𝜕𝑧

𝜕𝑦
= 𝑥2𝑓′ + 2𝑦 𝑔                           (3) 

                  𝑟 =  
𝜕2𝑧

𝜕𝑥2
= 2𝑓 + 𝑦2𝑔′′                           (4) 

                  𝑠 =  
𝜕2𝑧

𝜕𝑥 𝜕𝑦 
= 2𝑥𝑓′ + 2𝑦 𝑔′                  (5) 

                  𝑡 =  
𝜕2𝑧

𝜕𝑦2
= 𝑥2𝑓′′ + 2 𝑔                           (6) 

(3)  ⇒   𝑓′ =
𝑞 − 2 𝑔 𝑦

𝑥2
                                             (7) 

(2)  ⇒   𝑔′ =
𝑝 − 2 𝑓 𝑥

𝑦2
                                             (8) 

Substituting (7) and (8) in (5), we get 

                  𝑠 = 2𝑥 [
𝑞 − 2 𝑔 𝑦

𝑥2
] + 2𝑦 [

𝑝 − 2 𝑓 𝑥

𝑦2
] 

𝑖. 𝑒. ,          𝑠 = 2 [
𝑦(𝑞 − 2 𝑔 𝑦) + 𝑥(𝑝 − 2 𝑓 𝑥)

𝑥𝑦
] 

𝑖. 𝑒. ,      𝑥𝑦𝑠 = 2[𝑞𝑦 + 𝑝𝑥 − 2(𝑥2𝑓 + 𝑦2𝑔)] 

𝑖. 𝑒. ,      𝑥𝑦𝑠 = 2[𝑝𝑥 + 𝑞𝑦 − 2𝑧]                 From (1) 
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This is the required partial differential equation. 

31. Obtain the partial differential equation by eliminating ‘𝒇’ from  𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙 = 𝒇 (
𝒛

𝒙+𝒚
). 

Solution:  Given   𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 𝑓 (
𝑧

𝑥+𝑦
)                        (1) 

Here we have to eliminate the only one arbitrary function ‘𝑓’. For differentiating (1) 

partially with respect to ‘𝑥’ we get 

                 𝑦 + 𝑦𝑝 + 𝑧 + 𝑥𝑝 = 𝑓′ (
𝑧

𝑥 + 𝑦
) {

(𝑥 + 𝑦)𝑝 − 𝑧

(𝑥 + 𝑦)2
} 

                𝑖. 𝑒. ,      
(𝑥 + 𝑦)2

(𝑥 + 𝑦)𝑝 − 𝑧
[𝑝(𝑥 + 𝑦) + (𝑦 + 𝑧)] = 𝑓′ (

𝑧

𝑥 + 𝑦
)                    (2) 

Differentiating (1) partially with respect to ‘𝑦’ we get 

                 𝑥 + 𝑦𝑞 + 𝑧 + 𝑥𝑞 = 𝑓′ (
𝑧

𝑥 + 𝑦
) {

(𝑥 + 𝑦)𝑞 − 𝑧

(𝑥 + 𝑦)2
} 

                𝑖. 𝑒. ,      
(𝑥 + 𝑦)2

(𝑥 + 𝑦)𝑞 − 𝑧
[𝑞(𝑥 + 𝑦) + (𝑥 + 𝑧)] = 𝑓′ (

𝑧

𝑥 + 𝑦
)                    (3) 

From (2) and (3), we get 

[𝑝(𝑥 + 𝑦) + (𝑦 + 𝑧)][(𝑥 + 𝑦)𝑞 − 𝑧] = [𝑞(𝑥 + 𝑦) + (𝑥 + 𝑧)][(𝑥 + 𝑦)𝑝 − 𝑧] 

𝑖. 𝑒., 𝑝(𝑥 + 𝑦)(𝑥 + 2𝑧) − 𝑞(𝑥 + 𝑦)(𝑦 + 2𝑧) = 𝑧(𝑥 − 𝑦) 

This is the required partial differential equation. 

32. Obtain the partial differential equation by eliminating the arbitrary functions 𝒇 and  

from  𝒛 = 𝒙 𝒇 (
𝒚

𝒙
) + 𝒚 (𝒙). 

Solution:  Given   𝑧 = 𝑥 𝑓 (
𝑦

𝑥
) + 𝑦 (𝑥)                        (1) 

Here we have to eliminate two arbitrary functions 𝑓and .  

Differentiating (1) partially with respect to ‘𝑥’ and ‘𝑦’ we get 

𝜕𝑧

𝜕𝑥
= 𝑓 (

𝑦

𝑥
) −

𝑦

𝑥
𝑓′ (

𝑦

𝑥
) + 𝑦′(𝑥)                   (2) 
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and
𝜕𝑧

𝜕𝑦
= 𝑓′ (

𝑦

𝑥
) + (𝑥)                                           (3) 

Partially differentiating (3) with respect to ‘𝑦’ and ‘𝑥’, we get 

𝜕2𝑧

𝜕𝑦2
=

1

𝑥
𝑓′′ (

𝑦

𝑥
)                            (4)   

and
𝜕2𝑧

𝜕𝑥𝜕𝑦
= − 

𝑦

𝑥2
𝑓′′ (

𝑦

𝑥
) + 

′(𝑥)    (5)    

Still we are unable to eliminate the two arbitrary functions. Hence we find one more 

partial derivatives i.e., third derivatives. 

Differentiating (4) partially with respect to ‘𝑦’ and ‘𝑥’ we get 

𝜕3𝑧

𝜕𝑦3
=

1

𝑥2
𝑓′′′ (

𝑦

𝑥
)                            (6)   

and
𝜕3𝑧

𝜕𝑥𝜕𝑦2
= − 

1

𝑥2
𝑓′′ (

𝑦

𝑥
) −

𝑦

𝑥3
𝑓′′′ (

𝑦

𝑥
)            (7)    

Substituting (4) and (6) in (7), we get 

𝜕3𝑧

𝜕𝑥𝜕𝑦2
= − 

1

𝑥2
(𝑥 

𝜕2𝑧

𝜕𝑦2
) −

𝑦

𝑥3
(𝑥2

𝜕3𝑧

𝜕𝑦3
) 

𝜕3𝑧

𝜕𝑥𝜕𝑦2
= − 

1

𝑥
[
𝜕2𝑧

𝜕𝑦2
+ 𝑦 

𝜕3𝑧

𝜕𝑦3
]     or            𝑥 

𝜕3𝑧

𝜕𝑥𝜕𝑦2
+

𝜕2𝑧

𝜕𝑦2
+ 𝑦 

𝜕3𝑧

𝜕𝑦3
= 0 

This is the required partial differential equation. 

 

 

 

Formation of partial differential equations by elimination of arbitrary function 𝒇 from 

𝒇(𝒖, 𝒗) = 𝟎 where 𝒖 and 𝒗 are functions of 𝒙, 𝒚 𝐚𝐧𝐝 𝒛. 

Let  𝑓(𝑢, 𝑣) = 0               (1) 

be a given function of 𝑢 and 𝑣, where 𝑢 and 𝑣 are functions of 𝑥, 𝑦 and 𝑧. 
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Differentiating (1) partially with respect to 𝑥 and 𝑦, we get 

𝜕𝑓

𝜕𝑢
 .

𝜕𝑢

𝜕𝑥
+

𝜕𝑓

𝜕𝑣
 .

𝜕𝑣

𝜕𝑥
= 0                        (2) 

and
𝜕𝑓

𝜕𝑢
 .

𝜕𝑢

𝜕𝑦
+

𝜕𝑓

𝜕𝑣
 .

𝜕𝑣

𝜕𝑦
= 0              (3) 

To eliminate 𝑓 it is enough we eliminate 
𝜕𝑓

𝜕𝑢
 and 

𝜕𝑓

𝜕𝑣
 from (2) and (3). Elimination of  

𝜕𝑓

𝜕𝑢
 and 

𝜕𝑓

𝜕𝑣
 from (2) and (3) gives 

||

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

|| = 0                       (4) 

Where 
𝜕𝑢

𝜕𝑥
 ,

𝜕𝑢

𝜕𝑦
 ,

𝜕𝑣

𝜕𝑥
 ,

𝜕𝑣

𝜕𝑦
 are to be determined from 𝑢and 𝑣, where 𝑢 and 𝑣 are functions of 

𝑥, 𝑦 and 𝑧. 

 

EXAMPLES 

33. Form the partial differential equation by eliminating the function 𝒇 from the relation  

𝒇(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐, 𝒙𝒚𝒛) = 𝟎. 

Solution: Given 𝑓(𝑥2 + 𝑦2 + 𝑧2, 𝑥𝑦𝑧) = 0                           (1) 

Let      𝑢 = 𝑥2 + 𝑦2 + 𝑧2                                               (2) 

𝑣 = 𝑥𝑦𝑧                                                                 (3) 

Equation (1) becomes    𝑓(𝑢, 𝑣) = 0                        (4) 

This is of the above type. We know that elimination of 𝑓 from (4) gives 

||

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

|| = 0              (5) 

              From (2), we get     
𝜕𝑢

𝜕𝑥
= 2𝑥 + 2𝑧𝑝                     (6) 
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𝜕𝑢

𝜕𝑦
= 2𝑦 + 2𝑧𝑞                     (7) 

              From (3), we get     
𝜕𝑣

𝜕𝑥
= 𝑥𝑦𝑝 + 𝑦𝑧                     (8) 

𝜕𝑣

𝜕𝑦
= 𝑥𝑦𝑞 + 𝑥𝑧                     (9) 

Substituting (6), (7), (8) and (9) in (5), we get 

|
2𝑥 + 2𝑧𝑝 2𝑦 + 2𝑧𝑞
𝑥𝑦𝑝 + 𝑦𝑧 𝑥𝑦𝑞 + 𝑥𝑧

| = 0 

𝑖. 𝑒., (2𝑥 + 2𝑧𝑝)(𝑥𝑦𝑞 + 𝑥𝑧) − (2𝑦 + 2𝑧𝑞)(𝑥𝑦𝑝 + 𝑦𝑧) = 0 

𝑖. 𝑒., 𝑝𝑥(𝑧2 − 𝑦2) + 𝑞𝑦(𝑥2 − 𝑧2) = 𝑧(𝑦2 − 𝑥2) 

This is the required partial differential equation. 

34. Form the partial differential equation by eliminating the function 𝒇 from the relation  

𝒇 (
𝒚

𝒙
, 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐) = 𝟎 

Solution: Given 𝑓 (
𝑦

𝑥
, 𝑥2 + 𝑦2 + 𝑧2) = 0                           (1) 

Let      𝑢 = 𝑦/𝑥                                                             (2) 

𝑣 = 𝑥2 + 𝑦2 + 𝑧2                                           (3) 

Equation (1) becomes    𝑓(𝑢, 𝑣) = 0                   (4) 

This is of the above type. We know that elimination of 𝑓 from (4) gives 

||

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

|| = 0              (5) 

              From (2), we get     
𝜕𝑢

𝜕𝑥
= −

𝑦

𝑥2
 ,   

𝜕𝑢

𝜕𝑦
=

1

𝑥
                     (6) 

              From (3), we get     
𝜕𝑣

𝜕𝑥
= 2𝑥 + 2𝑧𝑝 ,   

𝜕𝑣

𝜕𝑦
= 2𝑦 + 2𝑧𝑞                   (7) 

Substituting (6) and (7) in (5), we get 
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| −
𝑦

𝑥2

1

𝑥
2𝑥 + 2𝑧𝑝 2𝑦 + 2𝑧𝑞

| = 0 

                𝑖. 𝑒., −
𝑦

𝑥2
(2𝑦 + 2𝑧𝑞) −

1

𝑥
(2𝑥 + 2𝑧𝑝) = 0 

𝑖. 𝑒. ,           𝑥𝑧𝑝 + 𝑦𝑧𝑞 + 𝑥2 + 𝑦2 = 0 

This is the required partial differential equation. 
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VECTOR CALCULUS 

Unit-IV 

Vector Differentiation 

 

 

INTRODUCTION 

The main objective is to introduce vector calculus to the engineering student 

which consists of differentiation and integration of vector functions.  This, 

naturally, leads to the study of new concepts like gradient, divergence and curl of 

scalar and vector respectively, which in turn will facilitate the study of 

solenoidal, conservative and irrotational fields.  These are important to 

engineering branches like electrical and electronics engineering and mechanical 

engineering.  Finally, vector integration with useful theorems like Green;s 

Stokes; and Gauss’ divergence theorems are introduced.    

We have studies the differential and integral calculus of functions of a single 

variable and several variables.  We are also familiar with the study of vectors.  

All these topics together form a branch of engineering mathematics known as 

vector calculus. 

Vector calculus is used to model a vast range of engineering problems.  For 

example, it is used in electrostatic charges, electromagnetic fields, air flow 

around air craft, cars and other solid objects, fluid flow around ships and heat 

flow in nuclear reactors.  One can appreciate the actual use of vector calculus 

while dealing with different topics in it. 

 

VECTOR FUNCTIONS 

If to each value of a scalar variable 𝑡, there corresponds a value of vector �̅�, then 

�̅�is called a vector function of a scalar variable 𝑡 and we write �̅� = �̅� (𝑡) or �̅� =

 𝑓̅(𝑡). 

For example the position vector �̅� of a particle moving along a curved path is a 

vector function of time 𝑡, a scalar. 

Since every vector can be uniquely expressed as a linear combination of three 

fixed non co-planar vectors, therefore, we may write  
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𝑓(̅𝑡) =  𝑓1(𝑡)𝑖̅ + 𝑓2(𝑡)𝑗̅ + 𝑓3(𝑡)�̅� 

where 𝑖,̅ 𝑗,̅ �̅�  denote unit vectors along the axes of 𝑥, 𝑦, 𝑧respectively, 

𝑓1(𝑡), 𝑓2(𝑡)𝑎𝑛𝑑𝑓3(𝑡) are called the components of the vector 𝑓̅(𝑡) along the 

coordinate axes. 

 

SCALAR AND VECTOR FIELDS 

Consider a region𝑅 of space such that every point 𝑃 in this region is connected 

with some physical property. Let the physical property be expressed by a 

quantity which has a definite value at every such point, 𝑃. The region in which 

the physical property is specified is called a field. 

Now, fields are of two kinds Scalar and Vector, according to the quantity 

expressing the physical property being the scalar or a vector. 

Thus a scalar field is one where the physical property in question is given by a 

scalar quantity. This scalar quantity will have different values at the different 

points of the region. In the other words, its value at a point 𝑃 in 𝑅 will depend on 

the coordinates of 𝑃.Hence this variable quantity is a function of position. It is 

known as the scalar point function. 

For example, in the study of temperature distribution is a heated body, the region 

occupied by that body will be a scalar field and the temperature at any point 

within it is a scalar point function. Other examples of scalar fields are 

distribution of density, electric potential or of any other non- directed and the 

pressure in the atmosphere. 

∅(𝑥, 𝑦, 𝑧) =  𝑥2 + 𝑦2 − 𝑧2 −  3𝑥𝑦𝑧 define a scalar field.  

 

If the physical property of a region is represented by a vector quantity, it is said 

to constitute a vectorfield. 

A typical example of a vector field is the distribution of velocity at all points of a 

moving fluid. 

 

The velocity at every point will be represented by a continuous vector function. 

At a particular point, the function is specified by a vector of certain magnitude 

and direction, both of which change continuously from point to point throughout 
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the field. Such a function which represents the physical property by a vector 

quantity is known as vector point function. 

Examples of vector fields are the velocity at any point in moving field, 

gravitational force on a particle in space and the earth’s magnetic field. 

�̅�(𝑥, 𝑦, 𝑧) =  (𝑦 − 𝑧)𝑖̅ + (𝑧 − 𝑥)𝑗̅ + (𝑥 − 𝑦)�̅� 

defines a vector field, where 𝑖,̅ 𝑗,̅ �̅� are unit vectors along 𝑥, 𝑦, 𝑧. 

 

THE VECTOR DIFFERENTIAL OPERATOR DEL 

The vector operator ∇ (read del) is defined as ∇= 𝑖̅
𝜕

𝜕𝑥
+ 𝑗̅

𝜕

𝜕𝑦
+  �̅�

𝜕

𝜕𝑧
 

The vector operator possesses properties analogous to those of ordinary vectors. 

It is useful in defining their quantities which arise in practical applications and 

are known as the gradient, the divergence and the curl. 

 

By its definition, ∇ is a symbolic vector consisting of three symbolic components 

along the axes 𝑖,̅ 𝑗,̅ �̅� the symbolic magnitudes of them being
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
. 

 

So ∇ is a vector operator. It is also a differential operator, just as 
𝑑

𝑑𝑥
 is an operator 

in the differential calculus. 

Thus ∇∅ =  (𝑖̅
𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ �̅�

𝜕

𝜕𝑧
) ∅ =  (𝑖̅

𝜕∅

𝜕𝑥
+ 𝑗̅

𝜕∅

𝜕𝑦
+ �̅�

𝜕∅

𝜕𝑧
) 

So ∇ acts both as a differential operator and as a vector. 

 

Note: The symbol ∇(𝑑𝑒𝑙) was originally called “nabla” an also “atled” which is 

“delta” (∆) reversed. It is called ‘del’ 

 

GRADIENT OF A SCALAR FUNCTION 

Let ∅(𝑥, 𝑦, 𝑧) be a scalar function of position throughout some region of space. 

Then the vector function 𝑖̅
𝜕∅

𝜕𝑥
+  𝑗̅

𝜕∅

𝜕𝑦
+ �̅�

𝜕∅

𝜕𝑧
 is known as the gradient of ∅  and is 

denoted by ∅ . In forming this new vector, it is assumed that the partial 
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derivatives  
𝜕∅

𝜕𝑥
,

𝜕∅

𝜕𝑦
,

𝜕∅

𝜕𝑧
  are exists. Such a vector exists corresponding each point 

of the region in which ∅(𝑥, 𝑦, 𝑧) is continuous and differentiable.  

Hence 𝑔𝑟𝑎𝑑∅ = 𝑖̅
𝜕∅

𝜕𝑥
+ 𝑗̅

𝜕∅

𝜕𝑦
+ �̅�

𝜕∅

𝜕𝑧
 = (𝑖̅

𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ �̅�

𝜕

𝜕𝑧
) ∅ = ∇∅ 

It is to be noted that ∇∅ defines a vector field. 

Note :  If ∅ is constant, then 
𝜕∅

𝜕𝑥
=  

𝜕∅

𝜕𝑦
=

𝜕∅

𝜕𝑧
= 0, so that 𝑔𝑟𝑎𝑑∅ = 0̅. 

 

IMPORTANT DEDUCTIONS 

1. Gradient of the sum of the functions: 

Let 𝑢 and 𝑣 be two scalar point functions 

∇(𝑢 + 𝑣) = 𝑖̅
𝜕(𝑢 + 𝑣)

𝜕𝑥
+ 𝑗̅

𝜕(𝑢 + 𝑣)

𝜕𝑦
+  �̅�

𝜕(𝑢 + 𝑣)

𝜕𝑧
 

= 𝑖̅
𝜕𝑢

𝜕𝑥
+ 𝑗̅

𝜕𝑢

𝜕𝑦
+  �̅�

𝜕𝑢

𝜕𝑧
 +  𝑖̅

𝜕𝑣

𝜕𝑥
+ 𝑗̅

𝜕𝑣

𝜕𝑦
+  �̅�

𝜕𝑣

𝜕𝑧
= ∇𝑢 +  ∇𝑣 

 

2. Gradient of the product of the functions ∇(𝑢𝑣) = 𝑢∇v + 𝑣∇u 

 

3. Gradient of a function: 

Let  =  𝑓(𝑢) , ∇𝑣 = ∇𝑓(𝑢) = (𝑖̅
𝜕

𝜕𝑥
+ 𝑗̅

𝜕

𝜕𝑦
+ �̅�

𝜕

𝜕𝑧
) 𝑓(𝑢) 

= 𝑓′(𝑢) (𝑖̅
𝜕𝑢

𝜕𝑥
+ 𝑗̅

𝜕𝑢

𝜕𝑦
+ �̅�

𝜕𝑢

𝜕𝑧
) = 𝑓′(𝑢)∇𝑢. 

Thus, as a differential operators, the operator ∇, follows the ordinary 

rules of calculus 

 

EXAMPLES 

1. If �̅� is the positive vector joining the origin 0 of a coordinate system and 

any point (𝑥, 𝑦, 𝑧). Prove that ∇(𝑟𝑛) = 𝑛𝑟𝑛−2�̅�  where 𝑜𝑝̅̅ ̅ =  �̅� =  𝑥𝑖̅ +

 𝑦𝑗̅ + 𝑧�̅� and 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2 . 

Solution:  Hence 2𝑟
𝜕𝑟

𝜕𝑥
= 2𝑥 , i.e., 

𝜕𝑟

𝜕𝑥
=

𝑥

𝑟
 

Similarly, 
𝜕𝑟

𝜕𝑦
=

𝑦

𝑟
 and 

𝜕𝑟

𝜕𝑧
=

𝑧

𝑟
. Also �̅� =  𝑥𝑖̅ +  𝑦𝑗̅ + 𝑧�̅� 
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∇(𝑟𝑛) = (𝑖̅
𝜕

𝜕𝑥
+ 𝑗̅

𝜕

𝜕𝑦
+ �̅�

𝜕

𝜕𝑧
) 𝑟𝑛  

= 𝑛𝑟𝑛−1 (𝑖̅
𝜕𝑟

𝜕𝑥
+ 𝑗̅

𝜕𝑟

𝜕𝑦
+ �̅�

𝜕𝑟

𝜕𝑧
) 

                   = 𝑛𝑟𝑛−1 (
𝑥

𝑟
𝑖̅ +

𝑦

𝑟
𝑗̅ +

𝑧

𝑟
�̅�) 

∇(𝑟𝑛) = 𝑛𝑟𝑛−2�̅� 

 

 

2.  If  ∇∅ = 𝑦𝑧𝑖̅ +  𝑧𝑥𝑗̅ + 𝑥𝑦�̅�, find ∅. 

Solution: Let  ∇∅ = (𝑖̅
𝜕∅

𝜕𝑥
+ 𝑗̅

𝜕∅

𝜕𝑦
+  �̅�

𝜕∅

𝜕𝑧
) = 𝑦𝑧𝑖̅ +  𝑧𝑥𝑗̅ + 𝑥𝑦�̅� 

Equating the corresponding coefficients of the unit vectors, we get 

𝜕∅

𝜕𝑥
= 𝑦𝑧                                  (𝐼) 

𝜕∅

𝜕𝑦
= 𝑧𝑥                                  (𝐼𝐼) 

𝜕∅

𝜕𝑧
= 𝑥𝑦                                   (𝐼𝐼𝐼) 

Partially integrating (𝐼), (𝐼𝐼) 𝑎𝑛𝑑 (𝐼𝐼𝐼) with respect to 

𝑥, 𝑦, 𝑧respectively, we get  

∅ = xyz + a constant independent of x 

∅ = xyz + a constant independent of y 

∅ = xyz + a constant independent of z 

Hence a possible form of ∅ is ∅ = 𝑥𝑦𝑧 + a constant. 

 

OPERATIONS INVOLVING𝛁: 

The vector character of the operator ∇ suggests that ∇ can operate scalarly or 

vectorially on a vector point function, say �̅�. The dot product ∇ ∙ �̅� and the cross 

product ∇ × �̅�are known respectively as the divergence and curl of the vector 

function �̅� and they are great importance in vector analysis.  

THE DIVERGENCE OF A VECTOR  

 Let �̅�(𝑥, 𝑦, 𝑧)be definedand differential at each point (𝑥, 𝑦, 𝑧) in some region of 

space. i.e., �̅� defines a differentiable vector field. Then the scalar product of the 
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vector operator ∇𝑎𝑛𝑑�̅� gives a scalar which is called the divergence of �̅� . Thus 

the divergence of �̅�  written 𝑑𝑖𝑣�̅� or ∇ ∙ �̅�is defined as 

∇ ∙ �̅� =(𝑖̅
𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ �̅�

𝜕

𝜕𝑧
) ∙ �̅� = (𝑖̅

𝜕𝐹

𝜕𝑥
+  𝑗̅

𝜕𝐹

𝜕𝑦
+ �̅�

𝜕𝐹

𝜕𝑧
) 

We can find the value of ∇ ∙ �̅� in terms of the components of �̅�. 

 Let �̅� =  𝐹1𝑖̅ +  𝐹2𝑗 ̅ + 𝐹3�̅�, where 𝐹1, 𝐹2 , 𝐹3 are functions of 𝑥, 𝑦, 𝑧. 

Then ∇ ∙ �̅� = (𝑖̅
𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ �̅�

𝜕

𝜕𝑧
) ∙ (𝐹1𝑖̅ +  𝐹2𝑗 ̅ +  𝐹3�̅�) 

= 𝑖̅
𝜕𝐹1

𝜕𝑥
+ 𝑗̅

𝜕𝐹2

𝜕𝑦
+  �̅�

𝜕𝐹3

𝜕𝑧
 (∵ 𝑖̅ ∙ 𝑖̅ = 𝑗̅ ∙ 𝑗 ̅ = �̅� ∙ �̅� = 1) 

This formula enables us to compute the divergence of �̅� when it is given in the 

form 

𝐹1𝑖̅ +   𝐹2𝑗 ̅ + 𝐹3�̅�.  Clearly, the divergence of �̅�. i.e., ∇ ∙ �̅� is a Scalar.  

 

THE CURL OF A VECTOR 

Let �̅�(𝑥, 𝑦, 𝑧)be defined and differentiable at each point (𝑥, 𝑦, 𝑧) in some region 

of space. i.e., �̅� defines a differentiable vector field. Then the vector product of 

the vector operator ∇𝑎𝑛𝑑�̅�gives a vector which is called the 𝑐𝑢𝑟𝑙𝑜𝑓�̅�written 

𝑐𝑢𝑟𝑙�̅� or 𝑟𝑜𝑡�̅�𝑜𝑟∇ × �̅� is defined as  

𝑐𝑢𝑟𝑙�̅� =  ∇ × �̅� =  (𝑖̅
𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ �̅�

𝜕

𝜕𝑧
) × �̅� 

= 𝑖̅ ×
𝜕�̅�

𝜕𝑥
+ 𝑗̅ ×

𝜕�̅�

𝜕𝑦
+ �̅� ×

𝜕�̅�

𝜕𝑧
 

We can find the value of the 𝑐𝑢𝑟𝑙�̅� in terms of its components. Let �̅� = 𝑣1𝑖̅ +

  𝑣2𝑗 ̅ + 𝑣3�̅�. where 𝑣1, 𝑣2, 𝑣3 are function of 𝑥, 𝑦, 𝑧.  

𝑐𝑢𝑟𝑙�̅� =  ∇ × �̅�  =  ||

𝑖̅ 𝑗 ̅ �̅�
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑣1 𝑣2 𝑣3

|| 

Note:𝑔𝑟𝑎𝑑∅ =  ∇∅ = 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑑𝑖𝑣�̅� =  ∇ ∙ �̅� = 𝑠𝑐𝑎𝑙𝑎𝑟 

𝑐𝑢𝑟𝑙�̅� =  ∇ × �̅� = 𝑣𝑒𝑐𝑡𝑜𝑟 
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3. If �̅� = 𝑥𝑖̅ +   𝑦𝑗̅ +  𝑧�̅�, then prove that 

(I)∇ ∙ �̅� = 3  𝑎𝑛𝑑(𝑖𝑖)∇ × �̅� = 0   

Solution: ∇ ∙ �̅�  =
𝜕

𝜕𝑥
(𝑥) + 

𝜕

𝜕𝑦
(𝑦) + 

𝜕

𝜕𝑧
(𝑧) = 1 + 1 + 1 = 3  

 ∇ × �̅� =  (
𝜕

𝜕𝑥
𝑖̅ +  𝑗 ̅

𝜕

𝜕𝑦
+ �̅�

𝜕

𝜕𝑧
) × (𝑥𝑖̅ + 𝑦𝑗̅ + 𝑧�̅�) = 0 

  

SOME GEOMETRICAL CONSIDERATIONS 

From the three dimensional analytic geometry, we recall that the equation of a 

plane is of the form 

∅(𝑥, 𝑦, 𝑧) =  constant , 𝑐say                  (1) 

 where ∅(𝑥, 𝑦, 𝑧) is a linear function of 𝑥, 𝑦, 𝑧. Let 𝑆 be the surface represented 

by (1), since ∅(𝑥, 𝑦, 𝑧) = 𝑐 , 𝜎𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑜𝑛𝑆, we have 𝑑∅ = 0 𝑜𝑛𝑆. Thus 𝑑∅ =

 ∇∅ ∙ 𝑑�̅� = 0 𝑜𝑛𝑆.                                                                (2) 

Let 𝑃(𝑥, 𝑦, 𝑧) be a point on the surface 𝑆 and 𝑄(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑍 + 𝑑𝑧) be a 

neighbouring point on 𝑆. then 𝑃𝑄̅̅ ̅̅ =  𝑂𝑄̅̅ ̅̅ − 𝑂𝑃̅̅ ̅̅ = 𝑑𝑥𝑖̅  +  𝑑𝑦𝑗̅ +  𝑑𝑧�̅� = 𝑑�̅� 

Expression (2) implies that at a point 𝑃 on a surface 𝑆, the vector ∇∅ is 

perpendicular to every directed line segment 𝑃𝑄̅̅ ̅̅  that is tangential to 𝑆. This 

means that ∇∅ is along the normal to the surface 𝑆 at the point 𝑃. 

 

Figure.10.1                                                   Figure.10.2 

 

UNIT NORMAL: we denote the unit vector directed along ∇∅ by �̅�. Thus, 

�̂� =  
∇∅

|∇∅|
                                                                                (3) 
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The vector �̂� is referred to as the unit vector to the surface 𝑆 at the point 

𝑃(𝑥, 𝑦, 𝑧).  

Directional Derivative: consider a vector �̅� inclined at an angle 𝜃 to the direction 

of ∇∅. thus the components of ∇∅ along �̅�, namely ∇∅ ∙

�̅�(𝑤ℎ𝑒𝑟𝑒�̂�𝑖𝑠𝑢𝑛𝑖𝑡𝑣𝑒𝑐𝑡𝑜𝑟�̅�),  is called the directional derivative of ∅ along �̅�.  

This is denoted by 

𝑑∅

𝑑�̅�
= ∇∅ ∙ �̂� =  |∇∅||�̂�|𝑐𝑜𝑠𝜃 =  |∇∅|𝑐𝑜𝑠𝜃           (4) 

In particular, the directional derivative of ∅ along �̂� 

𝑑∅

𝑑�̅�
= ∇∅ ∙ �̂� =  |∇∅| ∙

∇∅

|∇∅|
 =  

|∇∅|2

|∇∅|
=  |∇∅|          (5) 

This is called the normal derivative of ∅. 

Since 𝑐𝑜𝑠𝜃 assumes the maximum value, when 𝜃 = 0, it follows from 

(4) and (5) that  

max
𝜕∅

𝜕�̅�
= |∇∅| cos(0) =  |∇∅| =  

𝜕∅

𝜕�̂�
                           (6) 

Thus, the directional derivative 
𝜕∅

𝜕�̅�
 is maximum when �̅� is directed along �̂�, and 

the maximum is equal to the normal derivative. This means that ∅ varies most 

rapidly along ∇∅ and |∇∅| gives the maximum rate of variation. 

 

4. Find the unit normal to the surface 𝑦𝑧 + 𝑧𝑥 + 𝑥𝑦 = 𝑐at the point 

𝑃(−1, 2, 3). 

Solution: The equation of the given surface is ∅(𝑥, 𝑦, 𝑧) = 𝑐, where ∅ = 𝑦𝑧 +

𝑧𝑥 + 𝑥𝑦. 

This gives 
𝜕∅

𝜕𝑥
= 𝑧 + 𝑦; 

𝜕∅

𝜕𝑦
= 𝑧 + 𝑥; 

𝜕∅

𝜕𝑧
= 𝑥 + 𝑦;  

∵ ∇∅ = (𝑧 + 𝑦)𝑖̅ + (𝑧 + 𝑥)𝑗̅ + (𝑥 + 𝑦)�̅� 

At the point 𝑃(−1, 2, 3), this gives ∇∅ = 5𝑖̅ + 2𝑗̅ + �̅� 

and |∇∅| =  √52 + 22 + 12 =  √30 

Accordingly, the unit normal to the given surface at the given point 𝑃 is 

�̂� =
∇∅

|∇∅|
=

1

√30
(5𝑖̅ + 2𝑗̅ + �̅�). 
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5. Find the angle between the directions of the normals to the surface 

𝑥2𝑦𝑧 = 1 at the points 𝑃(−1,1,1) and 𝑄(1, −1, 1). 

Solution: The given surface is 𝑄(𝑥, 𝑦, 𝑧) =  𝑥2𝑦𝑧 = 1. 

At any point (𝑥, 𝑦, 𝑧) of this surface, the normal is along the vector  

∇∅ = 2𝑥𝑦𝑧𝑖̅ + 𝑥2𝑧𝑗̅ + 𝑥2𝑦�̅� 

At the point 𝑃(−1, 1, 1) the normal is along the vector �̅� =  [∇∅]𝑝 = 2𝑖̅ −

𝑗̅ + �̅� 

If 𝜃 is the angle between the directions of these normals, we have  

                 cos 𝜃 = 
�̅� ∙ �̅�

|𝑎||𝑏|
=  

−6

√6√6
= −1 

This gives 𝜃 =  𝜋 as the required angle. Thus, at the given points the normals to 

the given surface are in opposite direction. 

 

6. Find the angle between the surfaces 𝑥2 + 𝑦2 + 𝑧2 = 9  and 𝑧 = 𝑥2 +

𝑦2 − 3  at the point (2, −1, 2). 

Solution: The angle between two surfaces at a common point 𝑃 is defined to be 

equal to the angle between the normal to the surfaces at the point 𝑃. 

Here, the given surfaces are 𝑆1, whose equation is 

∅(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 9 = 0  (1)  

and 𝑆2, whose equation is  

𝜓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + −3 − 3 = 0  (2)  

These gives            
𝜕∅

𝜕𝑥
= 2𝑥,   

𝜕∅

𝜕𝑦
= 2𝑦, 

𝜕∅

𝜕𝑧
= 2𝑧 ; 

 
𝜕𝜓

𝜕𝑥
= 2𝑥,   

𝜕𝜓

𝜕𝑦
= 2𝑦, 

𝜕𝜓

𝜕𝑧
= −1 

∇∅ = 2𝑥𝑖̅ + 2𝑦𝑗̅ + 2𝑧�̅� and  ∇𝜓 = 2𝑥𝑖̅ + 2𝑦𝑗̅ − �̅�  (3) 

At the given point 𝑃(2, −1, 2) these become  

∇∅ = 4𝑖̅ − 2𝑗̅ + 4�̅� and  ∇𝜓 = 4𝑖̅ − 2𝑗̅ − �̅�   (4) 

So that at 𝑃, |∇∅| = 6 and |∇𝜓| =  √21    (5) 

We note that ∇∅is along normal to surface 𝑆1 and ∇𝜓is along normal to surface 

𝑆2.Therefore , if 𝜃 is angle between ∇∅ and ∇𝜓at point 𝑃. As such we have at 𝑃, 
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∇∅ ∙ ∇𝜓 =  |∇∅||∇𝜓| cos θ 

using equations (4) and (5), this gives  

cos θ =  
∇∅ ∙ ∇𝜓

|∇∅||∇𝜓|
   =  

(4𝑖̅ − 2𝑗̅ + 4�̅�) ∙ (4𝑖̅ − 2𝑗̅ − �̅�)

(6)(√21)
=  

8

3√21
 

so that 𝜃 =  cos−1 (
8

3√21
).         This is the required angle.  

 

7. Find the equation of the tangent plane to the surface 𝑥3 + 𝑦3 +  3𝑥𝑦𝑧 =

3 at the point (1, 2, −1). 

Solution: The equation of the given surface 𝑆 is ∅(𝑥, 𝑦, 𝑧) = 3. Where 

∅(𝑥, 𝑦, 𝑧) = 𝑥3 + 𝑦3 +  3𝑥𝑦𝑧. 

This gives 
𝜕∅

𝜕𝑥
= 3𝑥2 +  3𝑦𝑧,   

𝜕∅

𝜕𝑦
= 3𝑦2 +  3𝑧𝑥, 

𝜕∅

𝜕𝑧
= 3𝑥𝑦 

∇∅ = 3{(𝑥2 +  𝑦𝑧)𝑖̅ + (𝑦2 + 𝑧𝑥)𝑗̅ +  (𝑥𝑦)�̅�} 

At point P(1, 2, −1) , this becomes  

∇∅ = 3(−𝑖̅ + 3𝑗̅ + 2�̅�) 

This vector is directed along the normal to the given surface 𝑆 at the 

given point 𝑃. The direction ratio’s  of this vector are (−1, 3, 2) 

The tangent plane to the given surface 𝑆 at the given point 𝑃 =

(1, 2, −1) is the plane through 𝑃 which is perpendicular to the normal to 𝑆 at 𝑃, 

whose direction ratio’s are (−1, 3, 2).  

Hence the equation of this tangent plane is 

(−1)(𝑥 − 1) +  3(𝑦 − 2) +  2(𝑧 + 1) =  0 which implies to 𝑥 − 3𝑦 −

2𝑧 + 3 = 0. 

 

8. Find the constants a and b so that the surfaces 𝑥2 +  𝑎𝑦𝑧 = 3𝑥 and 

𝑏𝑥2𝑦 + 𝑧3 = (𝑏 − 8)𝑦 are orthogonal at the point 𝑃 = (1, 1, −2). 

Solution: The given surfaces are 𝑆1 , whose equation is 

∅(𝑥, 𝑦, 𝑧) = 𝑥2 +  𝑎𝑦𝑧 − 3𝑥 = 0   (1)  

and 𝑆2, whose equation is 𝜓(𝑥, 𝑦, 𝑧) = 𝑏𝑥2𝑦 + 𝑧3(𝑏 − 8)𝑦 = 0                (2)  

Then       
𝜕∅

𝜕𝑥
= 2𝑥 − 3,   

𝜕∅

𝜕𝑦
= 𝑎𝑧, 

𝜕∅

𝜕𝑧
= 𝑎𝑦 ;  

𝜕𝜓

𝜕𝑥
= 2𝑏𝑦,   

𝜕𝜓

𝜕𝑦
= 𝑏𝑥2 − 𝑏 + 8, 

𝜕𝜓

𝜕𝑧
= 3𝑧2 

∇∅ = −𝑖̅ − 2𝑎𝑗̅ + 𝑎�̅� and  ∇𝜓 = 2𝑏𝑖̅ + 8𝑗̅ + 12�̅�                  (3) 
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The Surfaces 𝑆1𝑎𝑛𝑑 𝑆2 are orthogonal at the point 𝑃 if   ∇∅ and  ∇𝜓 given by (3) 

are orthogonal. That is  if ∇∅ ∙ ∇𝜓 = 0 this yields 

−2𝑏 − 16𝑎 + 12𝑎 = 0 (𝑜𝑟) 4𝑎 + 2𝑏 = 0(4) 

Further, the point P must be common to the surfaces 𝑆1𝑎𝑛𝑑 𝑆2. That is 

the coordinates (1,1, −2) of 𝑃 must satisfy equations (1) and (2). This yields 

𝑎 =  −1 consequently, (4) yields  𝑏 = 2. 

Thus, when 𝑎 =  −1 and 𝑏 = 2, the given surfaces cut orthogonally at 

the point (1, 1, −2). 

 

9. Find the directional derivative of ∅ = 𝑥2𝑦𝑧 + 4𝑧2 at the point 

𝑃(1, −2, −1) along the vector �̅� = 2𝑖̅ − 𝑗̅ − 2𝑘.̅ 

Solution: For the given ∅, we have  

𝜕∅

𝜕𝑥
= 2𝑥𝑦𝑧,   

𝜕∅

𝜕𝑦
= 𝑥2𝑧, 

𝜕∅

𝜕𝑧
= 𝑥2𝑦 + 8𝑧 

∇∅ = 4𝑖̅ − 𝑗̅ + 10�̅�      (1) 

Next, we find that for the given vector 𝑎,̅ |𝑎 ̅| = 3 

The unit vector along �̂� is �̂� =  
�̅�

|�̅�|
=  

1

3
(2𝑖̅ − 𝑗̅ − 2�̅�)  (2) 

From (1) and (2), we get ∇∅ ∙ �̂� =  
1

3
(8 + 1 + 20) =  

29

3
 

This is the directional derivative of the given function ∅ along the given  

vector �̅�at the given point 𝑃. 

 

10. Find the directional derivative of ∅ = 𝑥𝑦𝑧  along the tangent vector to 

the curve 𝑥 = 𝑡, 𝑦 = 𝑡2, 𝑧 =  𝑡3at the point 𝑃(−1, 1, −1). 

Solution: For the given ∅, we find that  

∇∅ = 𝑦𝑧𝑖̅ +  𝑧𝑥𝑗̅ +  𝑥𝑦�̅�     (1) 

The vector equation of the given is  �̅� = 𝑡𝑖̅ +  𝑡2𝑗 ̅ + 𝑡3�̅�  (2) 

This gives 
𝑑�̅�

𝑑𝑡
= 𝑖̅ +  2𝑡𝑗̅ +  3𝑡2�̅� =  �̅� 

And |�̅�| = (1 +  4𝑡2 +  9𝑡4)
1

2⁄  

Therefore the unit tangent vector to the curve is �̂� =  
𝑎

|𝑎|̅̅ ̅̅
̅ =

𝑖̅+ 2𝑡�̅�+ 3𝑡2�̅�

(1+ 4𝑡2+ 9𝑡4)
1

2⁄

     (3) 

From (2), we verify that the given point  𝑃(−1, 1, −1) corresponds to  
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𝑡 =  −1. Hence at 𝑃, we get from (1) and (3),  

∇∅ = −𝑖̅ + 𝑗 ̅ − �̅� , �̂� =  
1

√14
(−𝑖̅ − 2𝑗̅ + 3�̅�) 

Hence the required directional derivative of ∅ =  𝑥3 − 𝑦2 + 𝑧 at the 

point (−1, 1, −1) 

We first recall that |∇∅| is the maximal directional derivative of ∅. 

For the given ∅, we find that ∇∅ =  3𝑥2𝑖̅ − 2𝑦𝑗̅ + �̅� 

 At the point (−1, 1, −1), this yields ∇∅ =  3𝑖̅ − 2𝑗̅ + �̅� and |∇∅| =  √14 

 Thus √14is the required maximum directional derivative. 

 

11. Find the directional derivative of ∅ = 𝑥2𝑦𝑧 + 4𝑥𝑧2 at the point 

𝑃(1, −2, −1) along the vector �̅� = 2𝑖̅ − 𝑗̅ − 2𝑘.̅ 

Solution: For the given ∅ we find that vector ∇∅ = (2𝑥𝑦𝑧 + 4𝑧2)𝑖̅ + 𝑥2𝑧 𝑗 ̅ +

(𝑥2𝑦 + 8𝑧𝑥)�̅� 

At the point 𝑃(1, −2, −1), this becomes  

∇∅ = 8𝑖̅ − 𝑗 ̅ − 10 �̅� 

Next, we find that for the given vector �̅�, we have |�̅�| = 3. Therefore, the unit 

vector along �̅� is �̂� =  
�̅�

|�̅�|
=  

1

3
(2𝑖̅ − 𝑗̅ − 2�̅�) 

∇∅ ∙ �̅� =  
1

3
(16 + 1 + 20) =  

37

3
 

This is the directional derivative of the given function ∅ along the given vector �̅� 

at the given point 𝑃. 

 

12. Find the direction from the point 𝑃(3, 1, −2) along which the directional 

derivative of ∅ = 𝑥2𝑦2𝑧4 is maximum. Find also the magnitude of this 

maximum. 

 

Solution: For the given ∅ we find that ∇∅ = 2𝑥𝑦2𝑧4𝑖̅ + 2𝑥2𝑦𝑧4𝑗 ̅ + 4𝑥2𝑦2𝑧3�̅� 

At the point 𝑃(3, 1, −2), this becomes  

∇∅ = 96𝑖̅ +  288𝑗̅ − 288 �̅� = 96(𝑖̅ +  3𝑗̅ − 3 �̅� 
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Since the directional derivative of ∅ along the vector 𝑐̅ is maximum 

when 𝑐̅ is along ∇∅, it follows that the directional derivative of the given 

function ∅ at the given point 𝑃 is maximum along the direction of the 

vector   96(𝑖̅ +  3𝑗̅ − 3 �̅�.  Also the magnitude of this maximum 

directional derivative is |96(𝑖̅ +  3𝑗̅ − 3 �̅�| = 96√19. 

 

13. If thetemperature at any point in space is given by 𝑇 = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 

find the direction in which temperature changes most rapidly with 

distance from the point (1, 1, 1) and determine the maximum rate of 

change.The greatest of increase of 𝑇 at any point is given in magnitude 

and direction by ∇𝑇. 

Solution: Here ∇𝑇 = (𝑖̅
𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ �̅�

𝜕

𝜕𝑧
) (𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) 

= (𝑦 + 𝑧)𝑖̅  + (𝑧 + 𝑥)𝑗̅ + (𝑥 + 𝑦)�̅� 

                =  2𝑖̅  + 2𝑗̅ +  2�̅� at the point (1,1,1). 

Magnitude of this vector  = ∇𝑇 = √12 = 2√3. 

 Hence at the point (1,1,1), the temperature changes most rapidly in the  

direction given by the vector 2𝑖̅  + 2𝑗̅ +  2�̅� and the greatest rate of  

increase  2√3. 

 

14. Prove that thedirectional derivative of ∅ = 𝑥3𝑦2𝑧 at (1 ,2 ,3) is 

maximum along the direction 9𝑖̅ + 3𝑗̅ + 𝑘.̅ Also find the maximum 

directional derivative. 

Solution: Let∅ = 𝑥3𝑦2𝑧,  

∇∅ = (𝑖̅
𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+  �̅�

𝜕

𝜕𝑧
) (𝑥3𝑦2𝑧) 

        = 36𝑖̅  + 12𝑗̅ +  4�̅�  at the point (1 ,2 ,3) 

We know that the directional derivative of ∅ is maximum along the 

direction ∇∅ 

 

Hence, it is maximum along the direction   of  4(9𝑖̅  + 3𝑗̅ + 𝑘)̅̅ ̅ 

The magnitude of this vector is 4√91 and this is the maximum 

directional derivative. 
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PHYSICAL INTERPRETATION OF DIVERGENCE  

Let us consider the case of a fluid flow. Consider a small rectangular 

parallelepiped of dimensions 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 parallel to 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 axes respectively. 

 

                                           Figure 10.3 

Let �̅� =  𝑉𝑥𝑖̅ + 𝑉𝑦𝑗 ̅ + 𝑉𝑧�̅� be the velocity of the fluid at 𝑝(𝑥, 𝑦, 𝑧) 

Mass of fluid flowing in through the face 𝐴𝐵𝐶per unit time =  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ×

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑎𝑐𝑒 =  𝑉𝑥(𝑑𝑦 𝑑𝑧) 

Mass of fluid flowing out across the face 𝑃𝑄𝑅𝑆 per unit time= 𝑉𝑥+𝑑𝑥(𝑑𝑦 𝑑𝑧) =

 (𝑉𝑥 + 
𝜕𝑉𝑥

𝜕𝑥
 𝑑𝑥 ) 𝑑𝑦 𝑑𝑧 

Net decrease in the mass of fluid in the parallelepiped corresponding to 

the flow along the 𝑥 axis per unit time 

𝑉𝑥  𝑑𝑦 𝑑𝑧 − (𝑉𝑥 + 
𝜕𝑉𝑥

𝜕𝑥
) 𝑑𝑦 𝑑𝑧  

=
𝜕𝑉𝑥

𝜕𝑥
 𝑑𝑥 𝑑𝑦 𝑑𝑧                   (−𝑣𝑒 𝑠𝑖𝑔𝑛 𝑠ℎ𝑜𝑤𝑠 𝑑𝑒𝑐𝑟𝑒𝑠𝑖𝑛𝑔 )  

Similarly the decrease in mass of fluid to the flow along the 𝑦 axis =
𝜕𝑉𝑦

𝜕𝑦
 𝑑𝑥 𝑑𝑦 𝑑𝑧                    

Decrease in mass of fluid to the flow along the 𝑧 axis =
𝜕𝑉𝑧

𝜕𝑧
 𝑑𝑥 𝑑𝑦 𝑑𝑧 

Total decrease of the amount of the fluid per unit time 

= (
𝜕𝑉𝑥

𝜕𝑥
+ 

𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧

𝜕𝑧
)  𝑑𝑥 𝑑𝑦 𝑑𝑧 
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Thus the rate of loss of fluid per unit volume 

𝜕𝑉𝑥

𝜕𝑥
+ 

𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧

𝜕𝑧
= (𝑖̅

𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ �̅�

𝜕

 𝜕𝑧
) ∙ (𝑖�̅�𝑥 + 𝑗�̅�𝑦 + �̅�𝑉𝑧) 

= ∇ ∙ �̅� = 𝑑𝑖𝑣 �̅� 

If the fluid is incompressible, there can be no gain or no lose in the 

volume element. Hence   𝑑𝑖𝑣 �̅� = 0    (1)𝑎𝑛𝑑  �̅� is called a Solenoidal vector 

function. Equation (1) is also called the equation of continuity. 

 

PHYSICAL INTERPRETATION OF A CURL 

We know that �̅� = 𝜔 ×  �̅�, where 𝜔 is the angular velocity, �̅� is the linear 

velocity and �̅� is the position vector of a point on the rotating body. 

 

Result:If�̅� = �̅�  ×  �̅�, prove that  

𝜔 =  
1

2
 𝑐𝑢𝑟𝑙 �̅�, 𝑤ℎ𝑒𝑟𝑒 �̅� 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑠𝑎𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑛𝑑 �̅� is the position vector . 

 Let �̅� = 𝜔1𝑖̅ + 𝜔2𝑗 ̅ + 𝜔3�̅�,since �̅�is constant vector and 𝜔1 , 𝜔2, 𝜔3are 

constants 

�̅� = 𝑥𝑖̅ + 𝑦𝑗̅ + 𝑧�̅��̅�  ×  �̅� =  |
i̅ j ̅ k̅

𝜔1 𝜔2 𝜔3

x y z
| 

�̅�  × �̅� =  (𝜔2𝑧 − 𝜔3𝑦 )i + (𝜔3𝑥 − 𝜔1𝑧)j +  (𝜔1𝑦 − 𝜔2𝑥 )k 

𝑐𝑢𝑟𝑙 (�̅�  ×  �̅�) =  |

i̅ j ̅ k̅
∂

∂x⁄ ∂
∂y⁄ ∂

∂z⁄

𝜔2𝑧 − 𝜔3𝑦 𝜔3𝑥 −  𝜔1𝑧 𝜔1𝑦 − 𝜔2𝑥

| 

=  i̅ {
∂

∂y
(𝜔1𝑦 − 𝜔2𝑥 ) −

∂

∂z
(𝜔3𝑥 − 𝜔1𝑧)}

+ j̅ {
∂

∂z
(𝜔2𝑧 − 𝜔3𝑦 ) −

∂

∂x
(𝜔1𝑦 − 𝜔2𝑥 )}

+ k̅ {
∂

∂x
(𝜔3𝑥 − 𝜔1𝑧) − 

∂

∂y
(𝜔2𝑧 − 𝜔3𝑦 )} 

 = 2𝜔1𝑖̅ + 2𝜔2𝑗 ̅ + 2𝜔3�̅� 

 = 2�̅� 

Hence 𝜔 =  
1

2
 𝑐𝑢𝑟𝑙 �̅�. 
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Thus, the angular velocity at any point is equal to half the curl of the 

linear velocity at that point of the body. 

 

Definition: A vector is said to be solenoidal if its divergence is zero and 

irrotational if its curl is zero. 

 

EXPANSION FORMULAE FOR OPERATORS INVOLVING 𝛁: 

Let ∅ be a scalar point function and �̅�, �̅� be vector point functions.  We can form 

the following products between these point functions:∅�̅�(Vector), �̅� ∙

 �̅�(Scalar), �̅� ×  �̅�(Vector). Operating with ∇ Scalarlly or vectorially we get the 

expressions:∇ ∙ ∅�̅�, ∇ × ∅�̅�, ∇(�̅� ∙ �̅�), ∇ ∙ (�̅� × �̅�), ∇ × (�̅� × �̅�). 

1. To prove that 𝑑𝑖𝑣 (∅�̅�) =  ∅ 𝑑𝑖𝑣 �̅� + �̅� ∙ 𝑔𝑟𝑎𝑑 ∅ 

 ∇ ∙ ∅�̅� = : ∅∇ ∙ �̅� + �̅� ∙ ∇∅ 

   By definition,  

                       𝑑𝑖𝑣 �̅� = 𝑖̅ ∙  
𝜕�̅�

𝜕𝑥
+ 𝑗̅ ∙

𝜕�̅�

𝜕𝑦
+ �̅� ∙

𝜕�̅�

𝜕𝑧
 

Hence  𝑑𝑖𝑣 (∅�̅�) = 𝑖̅ ∙  
𝜕(∅𝑢)

𝜕𝑥
+ 𝑗̅ ∙

𝜕(∅𝑢)

𝜕𝑦
+ �̅� ∙

𝜕(∅𝑢)

𝜕𝑧
 

= 𝑖̅ ∙  (∅ 
𝜕�̅�

𝜕𝑥
+ �̅�

𝜕∅

𝜕𝑥
) +  𝑗̅ ∙ (∅ 

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕∅

𝜕𝑦
) + �̅� ∙ (∅ 

𝜕�̅�

𝜕𝑧
+ �̅�

𝜕∅

𝜕𝑧
) 

=  ∅ {𝑖̅ ∙  
𝜕�̅�

𝜕𝑥
+  �̅� ∙

𝜕�̅�

𝜕𝑦
+  �̅� ∙

𝜕�̅�

𝜕𝑧
} + �̅� {𝑖̅ ∙  

𝜕∅

𝜕𝑥
+ 𝑗̅ ∙

𝜕∅

𝜕𝑦
+  �̅� ∙

𝜕∅

𝜕𝑧
} 

=  ∅ ∇ ∙ �̅� + �̅� ∙ ∇ ∅  

i.e., 𝑑𝑖𝑣 (∅�̅�) =  ∅ 𝑑𝑖𝑣 �̅� + �̅� ∙ 𝑔𝑟𝑎𝑑 ∅ 

 

2.  To prove that 𝐶𝑢𝑟𝑙 (∅�̅�) =  ∇∅ ×  �̅� + ∅ 𝐶𝑢𝑟𝑙 �̅� 

 By definition  

            𝐶𝑢𝑟𝑙 �̅� = 𝑖̅ ×  
𝜕�̅�

𝜕𝑥
+  𝑗̅ ×

𝜕�̅�

𝜕𝑦
+ �̅� ×

𝜕�̅�

𝜕𝑧
 

Hence 𝐶𝑢𝑟𝑙 (∅�̅�) = 𝑖̅ ×  
𝜕(∅𝑢)

𝜕𝑥
+  𝑗̅ ×

𝜕(∅𝑢)

𝜕𝑦
+  �̅� ×

𝜕(∅𝑢)

𝜕𝑧
 

 = 𝑖̅ ×  (∅ 
𝜕𝑢

𝜕𝑥
+ �̅�

𝜕∅

𝜕𝑥
) + 𝑗̅ × (∅ 

𝜕𝑢

𝜕𝑦
+ �̅�

𝜕∅

𝜕𝑦
) + �̅� × (∅ 

𝜕𝑢

𝜕𝑧
+ �̅�

𝜕∅

𝜕𝑧
) 
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=  ∅ {𝑖̅ ×  
𝜕�̅�

𝜕𝑥
+  �̅� ×

𝜕�̅�

𝜕𝑦
+ �̅� ×

𝜕�̅�

𝜕𝑧
} + �̅� {𝑖̅  ×

𝜕∅

𝜕𝑥
+ 𝑗̅ ×

𝜕∅

𝜕𝑦
+ �̅� ×

𝜕∅

𝜕𝑧
} 

   =  ∅ Curl �̅� +  (𝐺𝑟𝑎𝑑 ∅) ×  �̅� 

 

3.  To prove that 𝑑𝑖𝑣 (�̅�  ×  �̅�) =  �̅� ∙ 𝐶𝑢𝑟𝑙 �̅� − �̅� ∙ 𝐶𝑢𝑟𝑙 �̅� 

 By definition,  

                                 𝑑𝑖𝑣 �̅� = 𝑖̅ ∙  
𝜕�̅�

𝜕𝑥
+ 𝑗̅ ∙

𝜕�̅�

𝜕𝑦
+ �̅� ∙

𝜕�̅�

𝜕𝑧
 

 

 Hence      𝑑𝑖𝑣 (�̅�  ×  �̅�) = 𝑖̅ ∙  
𝜕(𝑢 × �̅�)

𝜕𝑥
+  𝑗̅ ∙

𝜕(𝑢 × �̅�)

𝜕𝑦
+ �̅� ∙

𝜕(𝑢 × �̅�)

𝜕𝑧
 

= 𝑖̅ ∙  (�̅� ×
𝜕�̅�

𝜕𝑥
+

𝜕�̅�

𝜕𝑥
× �̅�) + 𝑗̅ ∙ (�̅� ×

𝜕�̅�

𝜕𝑦
+

𝜕�̅�

𝜕𝑦
× �̅�) + �̅� ∙ (�̅� ×

𝜕�̅�

𝜕𝑧
+

𝜕�̅�

𝜕𝑧
× �̅�)

= 𝑖̅ ∙  �̅� ×
𝜕�̅�

𝜕𝑥
+ 𝑖̅ ∙

𝜕�̅�

𝜕𝑥
× �̅� + 𝑗̅ ∙ �̅� ×

𝜕�̅�

𝜕𝑦
+ 𝑗̅ ∙

𝜕�̅�

𝜕𝑦
× �̅� + �̅�

∙ �̅� ×
𝜕�̅�

𝜕𝑧
+  �̅� ∙

𝜕�̅�

𝜕𝑧
× �̅� 

= −𝑖̅ ∙  
𝜕�̅�

𝜕𝑥
× �̅� + 𝑖̅ ∙

𝜕�̅�

𝜕𝑥
× �̅� −  𝑗̅ ∙

𝜕�̅�

𝜕𝑦
× �̅� + 𝑗̅ ∙

𝜕�̅�

𝜕𝑦
× �̅� − �̅�

∙
𝜕�̅�

𝜕𝑧
× �̅� +  �̅� ∙

𝜕�̅�

𝜕𝑧
× �̅� 

Now in each of the triple products in the right side, the dot and the cross can be 

interchanged. 

Hence  

𝑑𝑖𝑣 (�̅�  ×  �̅�) = −𝑖̅ ×  
𝜕�̅�

𝜕𝑥
∙ �̅� + 𝑖̅ ×

𝜕�̅�

𝜕𝑥
∙ �̅� − 𝑗̅ ×

𝜕�̅�

𝜕𝑦
∙ �̅� + 𝑗̅ ×

𝜕�̅�

𝜕𝑦
∙ �̅� − �̅�

×
𝜕�̅�

𝜕𝑧
∙ �̅� + �̅� ×

𝜕�̅�

𝜕𝑧
∙ �̅� 

= [𝑖̅ ×  
𝜕�̅�

𝜕𝑥
+ 𝑗̅ ×

𝜕�̅�

𝜕𝑦
+ �̅� ×

𝜕�̅�

𝜕𝑧
] ∙ �̅� − [ �̅� ×  

𝜕�̅�

𝜕𝑥
+ 𝑗̅ ×

𝜕�̅�

𝜕𝑦
+ �̅� ×

𝜕�̅�

𝜕𝑧
] ∙ �̅� 

   = (𝐶𝑢𝑟𝑙 �̅�) ∙  �̅� − (𝐶𝑢𝑟𝑙 �̅�) ∙  �̅� 

    𝑑𝑖𝑣 (�̅�  ×  �̅�) =  �̅� ∙ 𝐶𝑢𝑟𝑙 �̅� − �̅� ∙ 𝐶𝑢𝑟𝑙 �̅� 
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SECOND ORDER DIFFERENTIAL OPERATORS 

1. To find the result of the operation ∇ ∙ (∇∅) = div(grad ∅) 

 Div grad ∅ = ∇ ∙ (∇∅) =  ∇ ∙ (𝑖̅ ∙  
𝜕∅

𝜕𝑥
+ 𝑗̅ ∙

𝜕∅

𝜕𝑦
+ �̅� ∙

𝜕∅

𝜕𝑧
) 

=  
𝜕

𝜕𝑥
(

𝜕∅

𝜕𝑥
) +  

𝜕

𝜕𝑦
(

𝜕∅

𝜕𝑦
) +

𝜕

𝜕𝑧
(

𝜕∅

𝜕𝑧
) 

=
𝜕2∅

𝜕𝑥2
+

𝜕2∅

𝜕𝑦2
+

𝜕2∅

𝜕𝑧2
=  (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) ∅ 

The operator 
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2 is called the Laplacian operator and it is 

denoted by  

∇2=  
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 

Hence we have ∇. ∇∅ = ∇2∅ 

The divergence of the gradient of a function is its Laplacian.  

We notice that we can use the notation ∇ ∙ ∇ = ∇2, Similar to the notation 

�̅� ∙  a̅ = a̅2 

 

2. To prove the identity :Curl (grad ∅) =  0̅, ∇ × (∇∅) 

 𝐺𝑟𝑎𝑑 ∅ =  𝑖 ̅
𝜕∅

𝜕𝑥
+ 𝑗̅

𝜕∅

𝜕𝑦
+ �̅�

𝜕∅

𝜕𝑧
 

Hence Curl (grad ∅) =  ∇ × ∇∅ = ∇ ×  (𝑖̅
𝜕∅

𝜕𝑥
+  𝑗̅

𝜕∅

𝜕𝑦
+  �̅�

𝜕∅

𝜕𝑧
) 

=  
|

|

i̅ j ̅ k̅
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝜕∅

𝜕𝑥

𝜕∅

𝜕𝑦

𝜕∅

𝜕𝑧

|

|
 

= 𝑖 (
𝜕2∅

𝜕𝑦 𝜕𝑧
−

𝜕2∅

𝜕𝑧 𝜕𝑦
) + 𝑗 (

𝜕2∅

𝜕𝑧 𝜕𝑥
−

𝜕2∅

𝜕𝑥 𝜕𝑧
) + 𝑘 (

𝜕2∅

𝜕𝑥 𝜕𝑦
−

𝜕2∅

𝜕𝑦 𝜕𝑥
) 

  =  0̅ + 0̅ + 0̅ = 0̅ 

The identity  Curl (grad ∅) = 0̅ is true for all values of ∅ and is very 

important. If 𝐶𝑢𝑟𝑙 �̅� =  0̅, then the vector �̅�is calledirrational. From the 
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above, we have the result that 𝐶𝑢𝑟𝑙 (𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡) =  0̅. Hence if 𝐶𝑢𝑟𝑙 �̅� =  0̅, 

then the vector �̅� can be expressed an the gradient of a scalar function. 

 

 

3. To prove the identity : 𝑑𝑖𝑣 𝐶𝑢𝑟𝑙 �̅� =  0,i.e., ∇ ∙ (∇ × F̅) = 0 

 Let �̅� =  𝐹1𝑖̅ + 𝐹2𝑗 ̅ + 𝐹3�̅� 

𝐶𝑢𝑟𝑙 �̅� =  ∇ × F̅ =  ||

i̅ j ̅ k̅
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐹1 𝐹2 𝐹3

|| 

= 𝑖̅ (
𝜕𝐹3

𝜕𝑦
−

𝜕𝐹2

𝜕𝑧
) + 𝑗̅ (

𝜕𝐹1

𝜕𝑧
−

𝜕𝐹3

𝜕𝑥
) + �̅� (

𝜕𝐹2

𝜕𝑥
−

𝜕𝐹1

𝜕𝑦
) 

Hence           𝑑𝑖𝑣 𝐶𝑢𝑟𝑙 �̅�  =
𝜕

𝜕𝑥
(

𝜕𝐹3

𝜕𝑦
−

𝜕𝐹2

𝜕𝑧
) +

𝜕

𝜕𝑦
(

𝜕𝐹1

𝜕𝑧
−

𝜕𝐹3

𝜕𝑥
) +

𝜕

𝜕𝑧
(

𝜕𝐹2

𝜕𝑥
−

𝜕𝐹1

𝜕𝑦
) 

𝜕2𝐹3

𝜕𝑥 𝜕𝑦
−

𝜕2𝐹2

𝜕𝑥 𝜕𝑧
+

𝜕2𝐹1

𝜕𝑦 𝜕𝑧
−

𝜕2𝐹3

𝜕𝑦 𝜕𝑥
+

𝜕2𝐹2

𝜕𝑧 𝜕𝑥
−

𝜕2𝐹1

𝜕𝑧 𝜕𝑦
= 0 

 The identity 𝑑𝑖𝑣 𝐶𝑢𝑟𝑙 �̅� =  0, i.e., ∇ ∙ (∇ × F̅) = 0 is true for any vector F̅. 

 

4. To prove𝐶𝑢𝑟𝑙 𝐶𝑢𝑟𝑙 F̅ =  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣F̅ − ∇2F̅ 

 Let �̅� =  𝐹1𝑖 + 𝐹2𝑗 + 𝐹3𝑘 , then  𝐶𝑢𝑟𝑙 �̅� =   |

i̅ j ̅ k̅
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐹1 𝐹2 𝐹3

| 

  𝐶𝑢𝑟𝑙 �̅� = 𝑖̅ (
𝜕𝐹3

𝜕𝑦
−

𝜕𝐹2

𝜕𝑧
) + 𝑗̅ (

𝜕𝐹1

𝜕𝑧
−

𝜕𝐹3

𝜕𝑥
) + �̅� (

𝜕𝐹2

𝜕𝑥
−

𝜕𝐹1

𝜕𝑦
) 

Hence 𝐶𝑢𝑟𝑙 𝐶𝑢𝑟𝑙 F̅ =  ||

i̅ j ̅ k̅
∂

∂x⁄ ∂
∂y⁄ ∂

∂z⁄

(
𝜕𝐹3

𝜕𝑦
−

𝜕𝐹2

𝜕𝑧
) (

𝜕𝐹1

𝜕𝑧
−

𝜕𝐹3

𝜕𝑥
) (

𝜕𝐹2

𝜕𝑥
−

𝜕𝐹1

𝜕𝑦
)

|| 

= 𝑖̅ [
𝜕

𝜕𝑦
(

𝜕𝐹2

𝜕𝑥
−

𝜕𝐹1

𝜕𝑦
) −  

𝜕

𝜕𝑧
(

𝜕𝐹1

𝜕𝑧
−

𝜕𝐹3

𝜕𝑥
)]

+ 𝑗̅ [
𝜕

𝜕𝑧
(

𝜕𝐹3

𝜕𝑦
−

𝜕𝐹2

𝜕𝑧
) −  

𝜕

𝜕𝑥
(

𝜕𝐹2

𝜕𝑥
−

𝜕𝐹1

𝜕𝑦
)]

+ �̅� [
𝜕

𝜕𝑥
(

𝜕𝐹1

𝜕𝑧
−

𝜕𝐹3

𝜕𝑥
) − 

𝜕

𝜕𝑦
(

𝜕𝐹3

𝜕𝑦
−

𝜕𝐹2

𝜕𝑧
)] 
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= 𝑖̅ [
𝜕2𝐹2

𝜕𝑦 𝜕𝑥
+

𝜕2𝐹3

𝜕𝑧 𝜕𝑥
] + 𝑗̅ [

𝜕2𝐹3

𝜕𝑧 𝜕𝑦
+

𝜕2𝐹1

𝜕𝑥 𝜕𝑦
] + �̅� [

𝜕2𝐹1

𝜕𝑥 𝜕𝑧
+

𝜕2𝐹3

𝜕𝑦 𝜕𝑧
]

− 𝑖̅ [
𝜕2𝐹1

𝜕𝑦2
+

𝜕2𝐹1

𝜕𝑧2
] − 𝑗̅ [

𝜕2𝐹2

𝜕𝑧2
+

𝜕2𝐹2

𝜕𝑥2
] − �̅� [

𝜕2𝐹3

𝜕𝑥2
+

𝜕2𝐹3

𝜕𝑦2
] 

= 𝑖̅ [
𝜕2𝐹1

𝜕𝑥2
+

𝜕2𝐹2

𝜕𝑦 𝜕𝑥
+

𝜕2𝐹3

𝜕𝑧 𝜕𝑥
] + 𝑗̅ [

𝜕2𝐹2

𝜕𝑦2
+

𝜕2𝐹3

𝜕𝑧 𝜕𝑦
+

𝜕2𝐹1

𝜕𝑥 𝜕𝑦
]

+ �̅� [
𝜕2𝐹3

𝜕𝑧2
+

𝜕2𝐹1

𝜕𝑥 𝜕𝑧
+

𝜕2𝐹3

𝜕𝑦 𝜕𝑧
] − 𝑖̅ [

𝜕2𝐹1

𝜕𝑥2
+

𝜕2𝐹1

𝜕𝑦2
+

𝜕2𝐹1

𝜕𝑧2
]

− 𝑗̅ [
𝜕2𝐹2

𝜕𝑥2
+

𝜕2𝐹2

𝜕𝑦2
+

𝜕2𝐹2

𝜕𝑧2
] − �̅� [

𝜕2𝐹3

𝜕𝑥2
+

𝜕2𝐹3

𝜕𝑦2
+

𝜕2𝐹3

𝜕𝑧2
] 

= 𝑖̅
𝜕

𝜕𝑥
[
𝜕𝐹1

𝜕𝑥
+

𝜕𝐹2

𝜕𝑦
+

𝜕𝐹3

𝜕𝑧
] + 𝑗̅

𝜕

𝜕𝑦
[
𝜕𝐹1

𝜕𝑥
+

𝜕𝐹2

𝜕𝑦
+

𝜕𝐹3

𝜕𝑧
] + �̅�

𝜕

𝜕𝑧
[
𝜕𝐹1

𝜕𝑥
+

𝜕𝐹2

𝜕𝑦
+

𝜕𝐹3

𝜕𝑧
]

− [
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
] (𝐹1𝑖̅ + 𝐹2𝑗 ̅ + 𝐹3�̅�) 

= [𝑖̅
𝜕

𝜕𝑥
+  𝑗̅

𝜕

𝜕𝑦
+ �̅�

𝜕

𝜕𝑧
] [

𝜕𝐹1

𝜕𝑥
+

𝜕𝐹2

𝜕𝑦
+

𝜕𝐹3

𝜕𝑧
] − ∇2F̅ 

 = grad div F̅ − ∇2F̅ 

Hence𝐶𝑢𝑟𝑙 𝐶𝑢𝑟𝑙 F̅ =  𝑔𝑟𝑎𝑑 𝑑𝑖𝑣F̅ − ∇2F̅ 

 

MEANING OF THE OPERATION (�̅�  ∙ 𝛁)�̅�: 

 ∇is a vector operator. Hence we first express the dot product �̅�  ∙ ∇ as a 

scalar operator.  

�̅�  ∙ ∇=  (𝑢1𝑖̅ + 𝑢2𝑗 ̅ + 𝑢3�̅�). (𝑖̅
𝜕

𝜕𝑥
+ 𝑗̅

𝜕

𝜕𝑦
+ �̅�

𝜕

𝜕𝑧
) 

                                                                = 𝑢1

𝜕

𝜕𝑥
+ 𝑢2

𝜕

𝜕𝑦
+ 𝑢3

𝜕

𝜕𝑧
 

Hence (�̅�  ∙ ∇)�̅� = (𝑢1
𝜕

𝜕𝑥
+ 𝑢2

𝜕

𝜕𝑦
+ 𝑢3

𝜕

𝜕𝑧
) �̅� 

= (𝑢1

𝜕�̅�

𝜕𝑥
+ 𝑢2

𝜕�̅�

𝜕𝑦
+ 𝑢3

𝜕�̅�

𝜕𝑧
) 

Now (�̅�  ∙ ∇)�̅�is written without the brackets as�̅�  ∙ ∇�̅�  but since ∙ ∇�̅�  has no 

meaning,  �̅�  ∙ ∇�̅�  means that �̅�associated with ∇ operates on �̅�. 

Similarly we shall now prove that (�̅�  ∙ ∇)∅ = �̅�  ∙ ∇∅ 
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�̅�  ∙ ∇ as before gives the scalar operator   𝑢1
𝜕

𝜕𝑥
+ 𝑢2

𝜕

𝜕𝑦
+ 𝑢3

𝜕

𝜕𝑧
 

Hence (�̅�  ∙ ∇)∅ = (𝑢1
𝜕

𝜕𝑥
+ 𝑢2

𝜕

𝜕𝑦
+ 𝑢3

𝜕

𝜕𝑧
)  ∅ = (𝑢1

𝜕∅

𝜕𝑥
+ 𝑢2

𝜕∅

𝜕𝑦
+ 𝑢3

𝜕∅

𝜕𝑧
) 

Now �̅�  ∙ ∇∅ =  (𝑢1𝑥 + 𝑢2𝑦 + 𝑢3𝑧) ∙ (
𝑖̅(𝜕∅)

𝜕𝑥
+

�̅�(𝜕∅)

𝜕𝑦
+

�̅�(𝜕∅)

𝜕𝑧
) = 𝑢1

𝜕∅

𝜕𝑥
+ 𝑢2

𝜕∅

𝜕𝑦
+

𝑢3
𝜕∅

𝜕𝑧
 

Hence (�̅�  ∙ ∇)∅ = �̅�  ∙ ∇∅ 

 

 

TWO MORE EXPANSION FORMULAS 

1. To prove that𝐶𝑢𝑟𝑙(�̅� × �̅�) = �̅� ∙ ∇�̅� − �̅� ∙ ∇�̅� + �̅�𝑑𝑖𝑣 �̅� − �̅� 𝑑𝑖𝑣 �̅� 

 By the definition 𝐶𝑢𝑟𝑙(�̅�) = 𝑖̅ ×  
𝜕𝐹

𝜕𝑥
+ 𝑗̅ ×

𝜕𝐹

𝜕𝑦
+ �̅� ×

𝜕𝐹

𝜕𝑧
 

Hence 𝐶𝑢𝑟𝑙 (�̅� × �̅�) = 𝑖̅ ×  
𝜕(𝑢×�̅�)

𝜕𝑥
+ 𝑗̅ ×

𝜕(𝑢×�̅�)

𝜕𝑦
+ �̅� ×

𝜕(𝑢×�̅�)

𝜕𝑧
 

= 𝑖̅ ×  (�̅� ×
𝜕�̅�

𝜕𝑥
+

𝜕�̅�

𝜕𝑥
× �̅�) +  𝑗̅ × (�̅� ×

𝜕�̅�

𝜕𝑦
+

𝜕�̅�

𝜕𝑦
× �̅�) + �̅� × (�̅� ×

𝜕�̅�

𝜕𝑧
+

𝜕�̅�

𝜕𝑧
× �̅�) 

 = 𝑖̅ ×  (�̅� ×
𝜕�̅�

𝜕𝑥
) + 𝑖̅ × (

𝜕𝑢

𝜕𝑥
× �̅�) +  𝑗̅ × (�̅� ×

𝜕�̅�

𝜕𝑦
) + 𝑗̅ × (

𝜕𝑢

𝜕𝑦
× �̅�) 

+�̅� × (�̅� ×
𝜕�̅�

𝜕𝑧
) + �̅� × (

𝜕�̅�

𝜕𝑧
× �̅�) 

But we know that �̅� ×  (�̅� × 𝑐̅) =  (�̅� ∙ 𝑐̅)�̅� − (�̅� ∙ �̅�)𝑐̅ 

Hence 𝐶𝑢𝑟𝑙(�̅� × �̅�) = (𝑖̅ ∙
𝜕�̅�

𝜕𝑥
) �̅� − (𝑖̅ ∙ �̅�)

𝜕�̅�

𝜕𝑥
+ (𝑖̅ ∙ �̅�)

𝜕𝑢

𝜕𝑥
− (𝑖̅ ∙

𝜕𝑢

𝜕𝑥
) �̅� +

 (𝑗̅ ∙
𝜕�̅�

𝜕𝑦
) �̅� − (𝑗̅ ∙ �̅�)

𝜕�̅�

𝜕𝑦
+      (𝑗 ̅ ∙ �̅�)

𝜕𝑢

𝜕𝑦
− (𝑗̅ ∙

𝜕𝑢

𝜕𝑦
) �̅� + (�̅� ∙

𝜕�̅�

𝜕𝑧
) �̅� − (�̅� ∙ �̅�)

𝜕�̅�

𝜕𝑧
+

(�̅� ∙ �̅�)
𝜕𝑢

𝜕𝑧
− (�̅� ∙

𝜕𝑢

𝜕𝑧
) �̅� 

= (𝑖̅ ∙
𝜕�̅�

𝜕𝑥
+ 𝑗̅ ∙

𝜕�̅�

𝜕𝑦
+ �̅� ∙

𝜕�̅�

𝜕𝑧
) �̅� − �̅� (𝑖̅ ∙

𝜕�̅�

𝜕𝑥
+ 𝑗̅ ∙

𝜕�̅�

𝜕𝑦
+ �̅� ∙

𝜕�̅�

𝜕𝑧
) 

− ((�̅� ∙ 𝑖)̅
𝜕�̅�

𝜕𝑥
+ (�̅� ∙ 𝑗)̅

𝜕�̅�

𝜕𝑦
+ (�̅� ∙ �̅�)

𝜕�̅�

𝜕𝑧
) 

+ ((�̅� ∙ 𝑖)̅
𝜕�̅�

𝜕𝑥
+ (�̅� ∙ 𝑗)̅

𝜕�̅�

𝜕𝑦
+ (�̅� ∙ �̅�)

𝜕�̅�

𝜕𝑧
)                         (𝐴) 



  

Dr.K.V.Nageswara Reddy, AITS(Autonomous), Kadapa  
 

Now (�̅� ∙ 𝑖)̅ = (𝑢1𝑖̅ + 𝑢2𝑗 ̅ + 𝑢3�̅�) ∙ 𝑖̅ =  𝑢1 

Similarly,  (�̅� ∙ 𝑗)̅ = 𝑢2, (�̅� ∙ �̅�) =  𝑢3 , (�̅� ∙ 𝑖)̅ = 𝑣1, (�̅� ∙ 𝑗)̅ = 𝑣2, (�̅� ∙ �̅�) = 𝑣3 

Also ∑ 𝑖̅ ∙
𝜕�̅�

𝜕𝑥
 = 𝑑𝑖𝑣 �̅�and ∑ 𝑖̅ ∙

𝜕𝑢

𝜕𝑥
 = 𝑑𝑖𝑣 �̅� 

Hence (A) becomes  

Curl (�̅� × �̅�) = (𝑑𝑖𝑣 �̅�)�̅� − (𝑑𝑖𝑣 �̅�)�̅� − (𝑢1

𝜕�̅�

𝜕𝑥
+ 𝑢2

𝜕�̅�

𝜕𝑦
+ 𝑢3

𝜕�̅�

𝜕𝑧
)

+ (𝑣1

𝜕�̅�

𝜕𝑥
+ 𝑣2

𝜕�̅�

𝜕𝑦
+ 𝑣3

𝜕�̅�

𝜕𝑧
) 

 = (𝑑𝑖𝑣 �̅�)�̅� − (𝑑𝑖𝑣 �̅�)�̅� − (𝑢1
𝜕

𝜕𝑥
+ 𝑢2

𝜕

𝜕𝑦
+ 𝑢3

𝜕

𝜕𝑧
) �̅� + (𝑣1

𝜕

𝜕𝑥
+ 𝑣2

𝜕

𝜕𝑦
+

𝑣3
𝜕

𝜕𝑧
) �̅� 

 = (𝑑𝑖𝑣 �̅�)�̅� − (𝑑𝑖𝑣 �̅�)�̅� − (�̅� ∙ ∇)�̅� + (�̅� ∙ ∇)�̅� 

 = (𝑑𝑖𝑣 �̅�)�̅� − (𝑑𝑖𝑣 �̅�)�̅� − �̅� ∙ ∇�̅� + �̅� ∙ ∇�̅� 

= �̅� ∙ ∇�̅� − �̅� ∙ ∇�̅� + (𝑑𝑖𝑣 �̅�)�̅� − (𝑑𝑖𝑣 �̅�)�̅� 

 

2. To Prove that grad (�̅� ∙ �̅�) = �̅� ∙ ∇�̅� + �̅� ∙ ∇�̅� + �̅� ×  𝑐𝑢𝑟𝑙 �̅� + �̅� × 𝑐𝑢𝑟𝑙 �̅� 

 By the definition grad (�̅� ∙ �̅�) =  (𝑖̅ ∙
𝜕

𝜕𝑥
+ 𝑗̅ ∙

𝜕

𝜕𝑦
+ �̅� ∙

𝜕

𝜕𝑧
) (�̅� ∙ �̅�) 

= 𝑖̅ ∙  (�̅� ∙
𝜕�̅�

𝜕𝑥
+

𝜕�̅�

𝜕𝑥
∙ �̅�) +  𝑗̅ ∙ (�̅� ∙

𝜕�̅�

𝜕𝑦
+

𝜕�̅�

𝜕𝑦
∙ �̅�) + �̅�

∙ (�̅� ∙
𝜕�̅�

𝜕𝑧
+

𝜕�̅�

𝜕𝑧
∙ �̅�) (1) 

Now, �̅� ×  𝑐𝑢𝑟𝑙 �̅� = �̅� ×  (𝑖̅ ×  
𝜕𝑢

𝜕𝑥
+ 𝑗̅ ×

𝜕𝑢

𝜕𝑦
+ �̅� ×

𝜕𝑢

𝜕𝑧
) 

=  �̅� × (𝑖̅ ×  
𝜕�̅�

𝜕𝑥
) + �̅� ×  (𝑗̅ ×

𝜕�̅�

𝜕𝑦
) + �̅� × (�̅� ×

𝜕�̅�

𝜕𝑧
) 

= (�̅� ∙  
𝜕�̅�

𝜕𝑥
) ∙ 𝑖̅ − (�̅� ∙ 𝑖)̅

𝜕�̅�

𝜕𝑥
+ (�̅� ∙  

𝜕�̅�

𝜕𝑦
) ∙ 𝑗̅ − (�̅� ∙ 𝑗)̅

𝜕�̅�

𝜕𝑦
+ (�̅� ∙  

𝜕�̅�

𝜕𝑧
) ∙ �̅�

− (�̅� ∙ �̅�)
𝜕�̅�

𝜕𝑧
 

= (�̅� ∙  
𝜕�̅�

𝜕𝑥
) ∙ 𝑖̅ − 𝑣1̅̅ ̅ ∙  

𝜕�̅�

𝜕𝑥
+ (�̅� ∙  

𝜕�̅�

𝜕𝑦
) ∙ 𝑗̅ − �̅�2 ∙  

𝜕�̅�

𝜕𝑦
+ (�̅� ∙  

𝜕�̅�

𝜕𝑧
) ∙ �̅� − 𝑣3̅̅ ̅

∙  
𝜕�̅�

𝜕𝑥
(∵ �̅� ∙ 𝑖̅ = 𝑣1̅̅ ̅ 𝑒𝑡𝑐). 
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= (�̅� ∙  
𝜕�̅�

𝜕𝑥
) ∙ 𝑖̅ + (�̅� ∙  

𝜕�̅�

𝜕𝑦
) ∙ 𝑗̅ + (�̅� ∙  

𝜕�̅�

𝜕𝑧
) ∙ �̅� −   (𝑣1

𝜕

𝜕𝑥
+ 𝑣2

𝜕

𝜕𝑦
+ 𝑣3

𝜕

𝜕𝑧
) �̅� 

= (�̅� ∙  
𝜕�̅�

𝜕𝑥
) ∙ 𝑖̅ + (�̅� ∙  

𝜕�̅�

𝜕𝑦
) ∙ 𝑗̅ + (�̅� ∙  

𝜕�̅�

𝜕𝑧
) ∙ �̅� − (�̅� ∙ ∇)�̅� 

= (�̅� ∙  
𝜕�̅�

𝜕𝑥
) ∙ 𝑖̅ + (�̅� ∙  

𝜕�̅�

𝜕𝑦
) ∙ 𝑗̅ + (�̅� ∙  

𝜕�̅�

𝜕𝑧
) ∙ �̅� − �̅�

∙ ∇𝑢 ̅                                             (2)  

Similarly, �̅� × 𝑐𝑢𝑟𝑙 �̅� = (�̅� ∙  
𝜕�̅�

𝜕𝑥
) ∙ 𝑖̅ + (�̅� ∙  

𝜕�̅�

𝜕𝑦
) ∙ 𝑗̅ + (�̅� ∙  

𝜕�̅�

𝜕𝑧
) ∙ �̅� − �̅� ∙

∇𝑢 ̅                                             (3)  

Adding (2) and (3), we get  

�̅� ×  𝑐𝑢𝑟𝑙 �̅� + �̅� × 𝑐𝑢𝑟𝑙 �̅� 

= (�̅� ∙
𝜕�̅�

𝜕𝑥
+ �̅� ∙

𝜕�̅�

𝜕𝑥
) ∙ 𝑖̅ + (�̅� ∙

𝜕�̅�

𝜕𝑦
+ �̅� ∙

𝜕�̅�

𝜕𝑦
) ∙ 𝑗̅ + (�̅� ∙

𝜕�̅�

𝜕𝑧
+ �̅� ∙

𝜕�̅�

𝜕𝑧
) ∙ �̅� − �̅� ∙ ∇�̅�

− �̅� ∙ ∇𝑢 ̅ 

= grad(�̅� ∙ �̅�) − �̅� ∙ ∇�̅� − �̅� ∙ ∇�̅�                      [from(1)] 

grad (�̅� ∙ �̅�) = �̅� ∙ ∇�̅� + �̅� ∙ ∇�̅� + �̅� ×  𝑐𝑢𝑟𝑙 �̅� + �̅� × 𝑐𝑢𝑟𝑙 �̅� 

 

 

SOLENOIDAL AND IRROTATIONAL FIELDS 

We shall mention here only two kinds of vector fields, having different 

associations of Curl and Divergence: 

(i) If the divergence of a vector  is zero, everywhere in a field, that field is 

termed Solenoidal.  

Suppose 𝑑𝑖𝑣 �̅� = 0                                                                  (1) 

Then 𝑣 determines a solenoidal field, we have the identity 

𝑑𝑖𝑣 𝐶𝑢𝑟𝑙 �̅� = 0                                                                       (2) 

Hence from (1) & (2) , we have �̅� = 𝐶𝑢𝑟𝑙 �̅� 

i.e., the solenoidal field �̅� can be expressed as the curl of another vector �̅�. 

This is an important characteristic of a solenoidal field. 

In the motion of an incompressible field, the divergence of the velocity 

vector is zero. Hence the velocity field is solenoidal. 
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(ii) If the curl of a vector is zero everywhere in a field, that field is termed 

irrotational or lamellar. Suppose  𝐶𝑢𝑟𝑙 �̅� = 0           (3) 

We have the identity that, if ∅ is a scalar function. Then 𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 ∅ = 0̅ 

From (3) & (4), we get �̅� = 𝑔𝑟𝑎𝑑 ∅ 

i.e., the irrotational field �̅� can be expressed as the gradient of a scalar function.   

This is an important characteristic of an irrotational field. Since �̅� = 𝑔𝑟𝑎𝑑 ∅, the 

vector field �̅� can be derived from a scalar field ∅. �̅� is called a Conservative 

vector field and ∅ is called the scalar potential. 

 

15. Show that the vector �̅� = (𝑥 + 3𝑦)𝑖̅ + (𝑦 − 3𝑧)𝑗̅ + (𝑥 −

2𝑧)�̅� 𝑖𝑠 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑𝑎𝑙. 

Solution: Let  �̅� = (𝑥 + 3𝑦)𝑖̅ +  (𝑦 − 3𝑧)𝑗̅ +  (𝑥 − 2𝑧)�̅� 

𝑑𝑖𝑣 �̅� =  ∇ ∙  �̅� =  (𝑖̅
𝜕

𝜕𝑥
+ 𝑗̅

𝜕

𝜕𝑦
+  �̅�

𝜕

𝜕𝑧
)

∙  {(𝑥 + 3𝑦)𝑖̅ +  (𝑦 − 3𝑧)𝑗̅ +  (𝑥 − 2𝑧)�̅�} 

=  (
𝜕

𝜕𝑥
(𝑥 + 3𝑦) +   

𝜕

𝜕𝑦
(𝑦 − 3𝑧) + 

𝜕

𝜕𝑧
(𝑥 − 2𝑧)) 

  = 1 + 1 − 2 = 0�̅�  𝑖𝑠 𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑𝑎𝑙 

 

 

16. Show that ∇ 𝑓(𝑟) =  
�̅�

𝑟
(

𝜕𝑓

𝜕𝑟
)and (∇ 𝑓(�̅�) ×  �̅� = 0  

Solution: Where |�̅�| =  |𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 | , 𝑟2 =  𝑥2 + 𝑦2 + 𝑧2 ,
𝜕𝑟

𝜕𝑥
=  

𝑥

𝑟
 

 ∇ 𝑓(𝑟) = (𝑖̅
𝜕 𝑓(𝑟)

𝜕𝑥
+ 𝑗̅

𝜕 𝑓(𝑟)

𝜕𝑦
+ �̅�

𝜕𝑓(𝑟)

𝜕𝑧
) 

= 𝑖̅
𝜕𝑓

𝜕𝑟

𝜕𝑟

𝜕𝑥
 + 𝑗̅

𝜕𝑓

𝜕𝑟

𝜕𝑟

𝜕𝑦
+ �̅�

𝜕𝑓

𝜕𝑟

𝜕𝑟

𝜕𝑧
 

{∇ 𝑓(𝑟)} × �̅� =  (
�̅�

𝑟

𝜕𝑓

𝜕𝑟
)  × �̅� =  

1

𝑟

𝜕𝑓

𝜕𝑟
(�̅� × �̅�) =  0̅ 

 

 

17. Show that 𝑑𝑖𝑣 (𝑟𝑛�̅�) = (𝑛 + 3)𝑟𝑛 and  𝐶𝑢𝑟𝑙 (𝑟𝑛�̅�) =  0̅. 

Solution: where �̅� =  𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘, 𝑟2 =  𝑥2 + 𝑦2 + 𝑧2 ,
𝜕𝑟

𝜕𝑥
=  

𝑥

𝑟
 ,

𝜕𝑟

𝜕𝑦
=  

𝑦

𝑟
 , 

𝜕𝑟

𝜕𝑧
=  

𝑧

𝑟
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𝑑𝑖𝑣 (𝑟𝑛�̅�) =  𝑑𝑖𝑣  (𝑟𝑛( 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘)) =  ∇ ∙  (𝑟𝑛( 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘)) 

=  
𝜕

𝜕𝑥
(𝑟𝑛𝑥) +  

𝜕

𝜕𝑦
(𝑟𝑛𝑦) +  

𝜕

𝜕𝑧
(𝑟𝑛𝑧) 

= 3𝑟𝑛 +  𝑛𝑟𝑛−1 {
𝜕𝑟

𝜕𝑥
 𝑥 + 

𝜕𝑟

𝜕𝑦
𝑦 +  

𝜕𝑟

𝜕𝑧
𝑧} 

= 3𝑟𝑛 +  𝑛𝑟𝑛−1 (
𝑥2 + 𝑦2 + 𝑧2

𝑟
) = 3𝑟𝑛 +  𝑛𝑟𝑛−1𝑟 =  3𝑟𝑛 +  𝑛𝑟𝑛

= (𝑛 + 3)𝑟𝑛 

 

18. If �̅� 𝑎𝑛𝑑 �̅� are irrotational, show that �̅�  × �̅� is solenoidal. 

Solution: Let �̅� 𝑎𝑛𝑑 �̅� are irrotational  

𝐶𝑢𝑟𝑙 𝐴 ̅ = 0̅ 𝑎𝑛𝑑 𝐶𝑢𝑟𝑙 𝐵 ̅ = 0̅ , 𝑖. 𝑒. , ∇  ×  𝐴 ̅ = 0̅ 𝑎𝑛𝑑 ∇ × 𝐵 ̅ = 0̅(1) 

𝑑𝑖𝑣 (�̅�  × �̅�) = ∇ ∙ �̅�  × �̅� =  �̅�  ∙ (∇ × �̅�) − �̅�  ∙ (∇ × �̅�) 

= �̅�  ∙ 0̅ − �̅�  ∙ 0̅ = 0                                                                            𝑢𝑠𝑖𝑛𝑔 (1) 

By the definition, a vector is solenoidal if its divergence is zero. 

�̅�  × �̅� is solenoidal if �̅� 𝑎𝑛𝑑 �̅� are irrotational.  

 

19. Show that 𝑟𝑛�̅� is an irrotational vector for any value of 𝑛, but it is 

solenoidal only if𝑛 =  −3. 

Solution: ∇ × (𝑟𝑛�̅� ) = 0̅ , 𝑟𝑛�̅� is an irrotational vector for any value of 𝑛, ∇ ∙

(𝑟𝑛�̅� ) = (𝑛 + 3)𝑟𝑛 

But the vector is solenoidal, ∇ ∙ (𝑟𝑛 �̅�) = 0  

⇒ 𝑛 + 3 = 0 ⇒ 𝑛 =  −3 

 

20. Determine the constant 𝑎 so that the vector �̅� =  (𝑥 + 3𝑦)𝑖̅ +

 (𝑦 − 3𝑧)𝑗̅ + (𝑥 − 𝑎𝑧)�̅�is solenoidal  

Solution: ∇ ∙ �̅� = 1 +  1 + 𝑎 = 𝑎 + 2 

For a solenoidal field, ∇ ∙ �̅� = 0 

𝑖. 𝑒., 𝑎 + 2 = 0 𝑜𝑟 𝑎 =  −2 

 

21. If ∅ 𝑎𝑛𝑑 𝛹 are differential scalar fields, prove that (∇∅ ∙ ∇𝛹) is 

solenoidal. 

Solution:   𝑑𝑖𝑣 (∇∅ ∙ ∇𝛹) = ∇𝛹 ∙ 𝑐𝑢𝑟𝑙 ∅ − ∇∅ ∙ curl ∇Ψ                     (1) 

But 𝑐𝑢𝑟𝑙 (𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ) =  0̅ identically  
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Hence 𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 ∅ = 0̅ = 𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 𝛹 

So (1) becomes 𝑑𝑖𝑣 (∇∅ ∙ ∇𝛹) =  0, ∇∅ × ∇𝛹 is solenoidal. 

 

 

22. Show that𝛻2𝑟𝑛 = 𝑛 (𝑛 + 1)𝑟𝑛−2 

Solution: We have ∇𝑟𝑛 = 𝑛 𝑟𝑛−2�̅�       (1) 

∇𝑟𝑛 =  ∇ ∙ ∇𝑟𝑛, since ∇ ∙ ∇∅ =  𝛻2∅ 

          = ∇ ∙ 𝑛 𝑟𝑛−2�̅� =   𝑛𝑟𝑛−2∇ ∙ �̅� + ∇( 𝑟𝑛−2) ∙ �̅� 

But ∇ ∙ �̅� = 3 

               𝛻2𝑟𝑛 = 3𝑛𝑟𝑛−2 + 𝑛 ∇(𝑟𝑛−2) ∙ �̅�                (2) 

Changing 𝑛 into 𝑛 − 2 in (1), we  have  

              ∇ ∙  𝑟𝑛−2 = (𝑛 − 2)𝑟𝑛−4�̅� 

Substituting in (2), we have  

               𝛻2𝑟𝑛 = 3𝑛𝑟𝑛−2 + 𝑛 (𝑛 − 2) 𝑟𝑛−4�̅� ∙  �̅� 

                         = 3𝑛𝑟𝑛−2 + 𝑛 (𝑛 − 2) 𝑟𝑛−2 

                            = 𝑛(3 + 𝑛 − 2) 𝑟𝑛−2 = 𝑛(𝑛 + 1) 𝑟𝑛−2 

 

23. Prove that 𝑐𝑢𝑟𝑙 (∅ ∇∅) =  0̅.  

Solution: ∇  ×  (∅ ∇∅) =  ∅(∇ × ∇∅) + ∇∅ × ∇∅ =  0̅ 

 

24. A Vector field is given by �̅� = (𝑥2 − 𝑦2 +  𝑥)i ̅ −  (2𝑥𝑦 + 𝑦)j ̅show that 

the field is irrotational and find its scalar potential. 

Solution:Since∇ × �̅� =  |

i̅ j k
∂

∂x⁄ ∂
∂y⁄ ∂

∂z⁄

𝑥2 − 𝑦2 +  𝑥 −2𝑥𝑦 − 𝑦 0

| 

 

=  i(̅0 − 0) + 𝑗(̅0 − 0) + �̅�(−2𝑦 − +2𝑦) = 0̅ 

�̅� is irrotational field and the vector �̅� can be expressed as the gradient of 

a scalar potential. i.e., �̅� =  ∇∅. 

(𝑥2 − 𝑦2 +  𝑥)i ̅ −  (2𝑥𝑦 + 𝑦)j ̅ =
𝜕∅

𝜕𝑥
i̅ +

𝜕∅

𝜕𝑦
j 

𝜕∅

𝜕𝑥
= 𝑥2 − 𝑦2 +  𝑥             (1),   

𝜕∅

𝜕𝑦
=  −2𝑥𝑦 − 𝑦                 (2) 

Integrating (1)𝑤. 𝑟. 𝑡.   𝑥, keeping 𝑦 constant, we get  
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∅ =  
𝑥3

3
− 𝑦2𝑥 +

𝑥2

2
+ 𝑓(𝑦)                       (3) 

Integrating (2)𝑤. 𝑟. 𝑡.  𝑦 , keeping 𝑥 constant, we get  

∅ =  −𝑥𝑦2 −
𝑦2

2
+  𝑔(𝑥)                              (4) 

Equating (3) & (4), we get 
𝑥3

3
− 𝑦2𝑥 +

𝑥2

2
+ 𝑓(𝑦) = −𝑥𝑦2 −

𝑦2

2
+  𝑔(𝑥) 

𝑓 (𝑦) =  −
𝑦2

2
                   𝑎𝑛𝑑  𝑔(𝑥) =  

𝑥3

3
+ 

𝑥2

2
 

Hence ∅ =
𝑥3

3
− 𝑦2𝑥 +  

𝑥2

2
−

𝑦2

2
 

 

25. A fluid motion is given by  �̅� = (𝑦 + 𝑧)𝑖̅ + (𝑧 + 𝑥)𝑗̅ + (𝑥 + 𝑦)�̅�. Is this 

motion irrotational? If so, find the scalar potential.  

Solution: 

curl �̅� = ∇ × �̅� =  |

i̅ j k
∂

∂x⁄ ∂
∂y⁄ ∂

∂z⁄

 𝑥 + 𝑦 𝑧 + 𝑥 𝑥 + 𝑦

|

=  i(̅1 − 1) + 𝑗(̅1 − 1) + �̅�(1 − 1) = 0̅ 

This motion is irrational and if ∅ is the scalar potential then �̅� =  ∇∅ 

ie., (𝑦 + 𝑧)𝑖̅ + (𝑧 + 𝑥)𝑗̅ + (𝑥 + 𝑦)�̅� = 𝑖̅
𝜕∅

𝜕𝑥
+ 𝑗̅

𝜕∅

𝜕𝑦
+ �̅�

𝜕∅

𝜕𝑧
 

𝜕∅

𝜕𝑥
= (𝑦 + 𝑧)(1);  

𝜕∅

𝜕𝑦
= (𝑧 + 𝑥)(2);

𝜕∅

𝜕𝑧
= (𝑥 + 𝑦)     (3)  

Integrating these, we get  

∅ =  (𝑦 + 𝑧)𝑥 + 𝑓1(𝑦, 𝑧)            (4) 

∅ =  (𝑧 + 𝑥)𝑦 + 𝑓2(𝑧, 𝑥)            (5) 

∅ =  (𝑥 + 𝑦)𝑧 + 𝑓3(𝑥, 𝑦)             (6) 

Equating (4), (5) & (6), we get 𝑓1(𝑦, 𝑧) = 𝑦𝑧, 𝑓2(𝑧, 𝑥) = 𝑧𝑥, 𝑓3(𝑥, 𝑦) =

𝑥𝑦  

Hence ∅ = 𝑦𝑧 + 𝑧𝑥 + 𝑥𝑦 
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Unit-V 

Vector Integration 

INTEGRATION OF A VECTOR FUNCTIONS  

Let 𝑓(̅𝑡) and�̅�(𝑡) be two vector functions of a scalar variable 𝑡 such that
𝑑𝐹(𝑡)

𝑑𝑡
=

𝑓̅(𝑡), then�̅�(𝑡) is called an integral of 𝑓̅(𝑡)  with respect to 𝑡 and we write 

∫ 𝑓(̅𝑡) 𝑑𝑡 =  �̅�(𝑡). 

If 𝑐̅  is any arbitrary constant vector independent of 𝑡, then
𝑑(𝐹(𝑡)+𝑐 ̅)

𝑑𝑡
= 𝑓̅(𝑡) 

This is equivalent to ∫ 𝑓(̅𝑡) 𝑑𝑡 =  �̅�(𝑡) + 𝑐̅.  

�̅�(𝑡) is called the indefinite integral of 𝑓̅(𝑡) . The constant vector 𝑐̅ is called the 

constant of integration and can be determined if some initial conditions are 

given.  

The definite integral of 𝑓̅(𝑡) between the limits 𝑡 = 𝑎 𝑎𝑛𝑑 𝑡 = 𝑏 is written as 

∫ �̅�(𝑡) 𝑑𝑡 
𝑏

𝑎

=  [�̅�(𝑡)]𝑎
𝑏 =  �̅�(𝑏) − �̅�(𝑎) 

 

Note 1: If 𝑓(̅𝑡) = 𝑓1(𝑡)𝑖̅ + 𝑓2(𝑡)𝑗̅ + 𝑓3(𝑡)�̅� , then 

∫ 𝑓̅(𝑡) 𝑑𝑡 = 𝑖̅ ∫ 𝑓1(𝑡)𝑑𝑡 + 𝑗̅ ∫  𝑓2(𝑡) 𝑑𝑡 + �̅� ∫ 𝑓3(𝑡) 𝑑𝑡 

Thus in order to integrate a vector function, integrate the components.  

 

Note 2: we can obtain some standard results for integration of vector functions 

by considering the derivatives of suitable vector functions. For example,  

(i) 
𝑑(�̅�∙𝑠̅)

𝑑𝑡
=

𝑑�̅�

𝑑𝑡
∙ �̅� + �̅� ∙  

𝑑𝑠̅

𝑑𝑡
  ⇒  ∫ (

𝑑�̅�

𝑑𝑡
∙ �̅� + �̅� ∙  

𝑑𝑠̅

𝑑𝑡
) 𝑑𝑡 = �̅� ∙ �̅� + 𝑐 

Here 𝑐 is a scalar quantity. Since the integrand is a scalar.  

(ii) 
𝑑�̅�2

𝑑𝑡
= 2�̅� ∙

𝑑�̅�

𝑑𝑡
  ⇒  ∫ (2�̅� ∙

𝑑�̅�

𝑑𝑡
) 𝑑𝑡 = �̅�2 + 𝑐 

Here 𝑐 is a scalar quantity. Since the integrand is a scalar.  

(iii) 
𝑑

𝑑𝑡
(�̅� ×

𝑑�̅�

𝑑𝑡
) =

𝑑�̅�

𝑑𝑡
×

𝑑�̅�

𝑑𝑡
+ �̅� ×

𝑑2�̅�

𝑑𝑡2  = �̅� ×  
𝑑2�̅�

𝑑𝑡2 

 ⇒  ∫ (�̅� × 
𝑑2�̅�

𝑑𝑡2
) 𝑑𝑡 = �̅� ×

𝑑�̅�

𝑑𝑡
+ 𝑐̅ 

Here 𝑐̅ is a vector quantity. Since the integrand is a vector.  
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(iv) If �̅� is a constant vector, then  

𝑑

𝑑𝑡
(�̅� × �̅�) =

𝑑�̅�

𝑑𝑡
× �̅� + �̅� ×  

𝑑�̅�

𝑑𝑡
 = �̅� ×  

𝑑�̅�

𝑑𝑡
 

 ⇒  ∫ (�̅� ×  
𝑑�̅�

𝑑𝑡
) 𝑑𝑡 = �̅� × �̅� + 𝑐̅ 

Here 𝑐̅ is a vector quantity. Since the integrand is a vector.  

 

1. The acceleration of a particle at time 𝑡 is given by �̅� = 18 cos 3𝑡 𝑖̅ −

8 sin 2𝑡 𝑗̅ + 6𝑡 �̅� . If the velocity �̅�and displacement �̅� are zero at 𝑡 = 0, 

find �̅�and �̅� at any point 𝑡 . 

Solution: Given �̅� =
𝑑2�̅�

𝑑𝑡2 = 18 cos 3𝑡 𝑖̅ − 8 sin 2𝑡 𝑗̅ + 6𝑡 �̅� 

Integrating, we get 

�̅� =
𝑑�̅�

𝑑𝑡
=  ∫(18 cos 3𝑡 𝑖̅ − 8 sin 2𝑡 𝑗̅ + 6𝑡 �̅�) 𝑑𝑡 

= 𝑖̅ ∫ 18 cos 3𝑡  𝑑𝑡  – 𝑗̅ ∫ 8 sin 2𝑡  𝑑𝑡 +  �̅� ∫ 6𝑡  𝑑𝑡 

= 6 sin 3𝑡 𝑖̅ + 4 cos 2𝑡 𝑗̅ + 3𝑡2�̅� + 𝑐̅ 

At 𝑡 = 0, �̅� = 0̅  ⇒ 0̅ = 4𝑗̅ + 𝑐̅  𝑜𝑟  𝑐̅ =  −4𝑗 ̅

∴ �̅� = 6 sin 3𝑡 𝑖̅ + 4 (cos 2𝑡 − 1)𝑗̅ + 3𝑡2�̅� 

Integrating again, we get  

�̅� = ∫(6 sin 3𝑡 𝑖̅ + 4 (cos 2𝑡 − 1)𝑗̅ + 3𝑡2�̅�) 𝑑𝑡 

= 𝑖̅ ∫ 6 sin 3𝑡  𝑑𝑡 – 𝑗̅∫ 4 (cos 2𝑡 − 1)  𝑑𝑡 +  �̅� ∫ 3𝑡2  𝑑𝑡 

= −2 cos 3𝑡 𝑖̅ + (2 sin 2𝑡 − 4𝑡)𝑗̅ + 𝑡3�̅� + �̅� 

At 𝑡 = 0, �̅� = 0̅  ⇒ 0̅ = −2 𝑖̅ + �̅�  𝑜𝑟 �̅� =  2𝑖 ̅

∴ �̅� = 2(1 − cos 3𝑡)𝑖̅ + (2 sin 2𝑡 − 4𝑡)𝑗̅ + 𝑡3�̅� 

 

2. If 𝑓̅(𝑡) = (3𝑡2 − 2𝑡)𝑖̅ + (6𝑡 − 4)𝑗̅ + 4𝑡 �̅� , evaluate ∫ 𝑓(̅𝑡) 𝑑𝑡
3

2
. 

Solution: ∫ 𝑓̅(𝑡) 𝑑𝑡
3

2
=  ∫ (3𝑡2 − 2𝑡)𝑖̅ + (6𝑡 − 4)𝑗̅ + 4𝑡 �̅� 𝑑𝑡

3

2
 

= [(𝑡3 − 𝑡2)𝑖̅ + (3𝑡2 − 4𝑡)𝑗̅ + 2𝑡2�̅�]
2 

3
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= 14𝑖̅ + 11𝑗̅ + 10 �̅� 

 

LINE INTEGRAL OF A VECTOR FUNCTION 

Any integral which is to be evaluated along a curve is called a line integral.  

Consider a vector 𝑓̅ defined over a region 𝑅 in three dimensional space. Let 𝐶 be 

curve in this region and let its vector equation be �̅� = 𝑥(𝑡)𝑖̅ + 𝑦(𝑡)𝑗̅ + 𝑧(𝑡)�̅�(1) 

Where t is a real parameter. Let 𝐴 and 𝐵 be end points of 𝐶, which corresponds 

to 𝑡 = 𝑎 𝑎𝑛𝑑 𝑡 = 𝑏 respectively, where 𝑎 < 𝑏. Then, as 𝑡 increases 𝑎 𝑡𝑜 𝑏, a 

variable point 𝑃 (𝑥, 𝑦, 𝑧) describes the curve 𝐶 from the initial point 𝐴 to the 

terminal point B. If 𝐶 is a closed curve, then the point 𝐵 becomes coincident with 

the point 𝐴. 

 

                                                   Figure 10.4 

We note that 
𝑑�̅�

𝑑𝑡
is along the tangent vector to the curve 𝐶 at the point 

𝑃 (𝑥, 𝑦, 𝑧)and that the unit vector to 𝐶, at P is given by 

�̂� =  

𝑑�̅�

𝑑𝑡

|
𝑑�̅�

𝑑𝑡
|

                                                        (2) 

Now, consider the scalar function  𝑓̅ ∙
𝑑�̅�

𝑑𝑡
 , since 𝑓̅ is a function of 𝑥, 𝑦, 𝑧  

and 𝑥, 𝑦, 𝑧   are functions of the parameter 𝑡 on 𝐶,  and 
𝑑�̅�

𝑑𝑡
 is a function of 𝑡, it 

follows that 𝑓̅ ∙
𝑑�̅�

𝑑𝑡
 is a function of 𝑡 on 𝐶.  Suppose we integrate this function 

with respect to 𝑡 from 𝑡 = 𝑎 𝑡𝑜 𝑡 = 𝑏.  The resulting integral is called the scalar 

line integral of 𝑓̅ along the curve 𝐶 and is denoted by ∫ �̅� . 𝑑𝑟
𝐶

.  

Thus, we have by definition 
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∫ �̅� . 𝑑𝑟
𝐶

=  ∫ (𝑓̅ ∙
𝑑�̅�

𝑑𝑡
)

𝑏

𝑎

 𝑑𝑡                            (3) 

If 𝐶is a closed curve, then the integral sign  ∫𝐶
 is replaced by ∮𝐶

.  

 

Circulation: In fluid dynamics, if �̅� represent s the velocity of a fluid particle 

and 𝐶 is a closed curve then the integral ∫ �̅�  ∙ 𝑑�̅�
𝐶

 is called the circulation of �̅� 

around the curve 𝐶. 

If the circulation of �̅�around every closed curve in a region R vanishes 

then �̅� is said to be irrotational in R. 

Remarks:  

1. While defining ∫ �̅� . 𝑑𝑟
𝐶

 through the relation (3) it is customary to take 

the curve 𝐶 as positively oriented. A space curve 𝐶 is said to be 

positively oriented if its projection on the 𝑥𝑦 − plane is described in the 

anti-clockwise sense. The sign of the integral ∫ �̅� . 𝑑𝑟
𝐶

 changes, when 

the sense of description of C is reversed. 

2. In Cartesians, expression (3) becomes  

∫ �̅� . 𝑑𝑟
𝐶

=  ∫ (𝑓1𝑑𝑥 + 𝑓2𝑑𝑦 + 𝑓3𝑑𝑧 )
𝐶

 

= ∫ (𝑓1

𝑑𝑥

𝑑𝑡
+ 𝑓2

𝑑𝑦

𝑑𝑡
+ 𝑓3

𝑑𝑧

𝑑𝑡
)

𝑏

𝑎

 𝑑𝑡                                     (4) 

3.  In the special case where 𝑅 is a region in the 𝑥𝑦 − plane so that 𝐶 is a 

plane curve (in this region),  expression (4) becomes    

∫ 𝑓1𝑑𝑥 + 𝑓2𝑑𝑦 
𝐶

= ∫ (𝑓1

𝑑𝑥

𝑑𝑡
+ 𝑓2

𝑑𝑦

𝑑𝑡
)

𝑏

𝑎

 𝑑𝑡            (5)        

4. If 𝑓̅ represents a force  under which a particle moves from one end of 

curve 𝐶 to the other end (along the curve), then ∫ 𝑓̅ . 𝑑𝑟
𝐶

 represents the 

corresponding total work done by 𝑓̅. 
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3. If  �̅�  =  (5𝑥𝑦 –  6𝑥2)𝑖̅ + (2𝑦 − 4𝑥)𝑗,̅  evaluate ∫ �̅� . 𝑑𝑟,
𝐶

where  𝐶 is the 

curve 𝑦 = 𝑥3 , from the point(1, 1) to the point(2, 8). 

Solution: The given curve 𝐶 is a curve in the 𝑥𝑦 – plane. Therefore, 𝑧 ≡ 0 at 

every point of the curve. Setting 𝑥 = 𝑡 in the equation of 𝐶, we get 𝑦 =  𝑡3. 

Thus, the parametric equations of the given curve 𝐶 may be taken as 𝑥 = 𝑡, 𝑦 =

 𝑡3 , z = 0.Since 𝐶 is from the point (1, 1)to the point (2, 8), the x- coordinate of 

a point on the curve from 1 to 2. Thus, since we have set 𝑥 = 𝑡 on 𝐶,  we have 

1 ≤  𝑡 ≤ 2. 

We find that , on 𝐶, 

𝑟 =  𝑥𝑖̅  +  𝑦𝑗̅  +  𝑧�̅�  =  𝑡𝑖̅  + 𝑡3𝑗 ̅ + 0�̅� ,               
𝑑𝑟

𝑑𝑡
= 𝑖̅ + 3𝑡2𝑗 ̅

and   𝑓 = (5𝑡4 −  6𝑡2)𝑖̅ + (2𝑡3 −  4𝑡)𝑗,̅ 

so that    𝑓.
𝑑𝑟

𝑑𝑡
= (5𝑡4 −  6𝑡2) + 3𝑡2(2𝑡3 −  4𝑡) = 6𝑡5 +  5𝑡4 −  12𝑡3 −

 6𝑡2 . 

Therefore,  

∫ 𝑓 . 𝑑𝑟
𝑐

=  ∫ (𝑓 .
𝑑𝑟

𝑑𝑡

2

1

) 𝑑𝑡 =  ∫(6𝑡5 +  5𝑡4 −  12𝑡3 −  6𝑡2)𝑑𝑡 

2

1

= 35 

 

4. Evaluate∫ �̅� . 𝑑𝑟
𝑐

  along the circle𝑥2 +  𝑦2 =  𝑎2, where�̅�  = 3𝑥𝑦𝑖 −

𝑦𝑗 + 2𝑧𝑘.  

Solution:  The parametric equations of the given curve 𝐶 can be taken as 𝑥 =

𝑎𝑐𝑜𝑠𝑡, 𝑦 =  𝑎𝑠𝑖𝑛𝑡, z = 0, 0 ≤ t ≤ 2π.  Hence, on 𝐶,  

𝑟 =  𝑥𝑖̅  +  𝑦𝑗̅  +  𝑧�̅�  = (𝑎𝑐𝑜𝑠𝑡)𝑖̅  + (𝑎𝑠𝑖𝑛𝑡)𝑗̅ + 0𝑘,         
𝑑𝑟

𝑑𝑡
= 𝑎(−𝑠𝑖𝑛𝑡𝑖̅ + 𝑐𝑜𝑠𝑡𝑗)̅,  

and  𝑓 = 3(𝑎𝑐𝑜𝑠𝑡)(𝑎𝑠𝑖𝑛𝑡)𝑖̅ − (𝑎𝑠𝑖𝑛𝑡)𝑗̅ + 2 ∙  0�̅� 

so that 𝑓.
𝑑𝑟

𝑑𝑡
=  −3𝑎3𝑠𝑖𝑛2𝑡 𝑐𝑜𝑠𝑡 − 𝑎2𝑠𝑖𝑛𝑡 𝑐𝑜𝑠𝑡 =  −𝑎2(3𝑎 𝑠𝑖𝑛2𝑡 +

  𝑠𝑖𝑛𝑡 ) 𝑐𝑜𝑠𝑡 
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Therefore,    

∫ 𝑓 . 𝑑𝑟
𝑐

=  ∫ (𝑓 .
𝑑𝑟

𝑑𝑡

2𝜋

0

) 𝑑𝑡 =  ∫ {−𝑎2(3𝑎 𝑠𝑖𝑛2𝑡 +   𝑠𝑖𝑛𝑡 ) 𝑐𝑜𝑠𝑡} 𝑑𝑡 

2𝜋

0

 

     =  −𝑎2[𝑎𝑠𝑖𝑛3𝑡 +  
1

2
𝑠𝑖𝑛2𝑡]0

2𝜋 = 0 

 

5. If  �̅�  =  (2𝑦 + 3)𝑖̅ + 𝑥𝑧𝑗̅ + (𝑦𝑧 − 𝑥)�̅�,  evaluate the integral ∫ 𝑓 . 𝑑𝑟
𝑐

,  

where 𝐶 is the curve 𝑥 = 2𝑡2 , 𝑦 = 𝑡, 𝑧 =  𝑡3 from the point  (0,0,0) to 

the point (2, 1,1). 

Solution: The vector equation of the given curve 𝐶 is  

𝑟 =  𝑥𝑖̅  +  𝑦𝑗̅  +  𝑧�̅� = 2𝑡2𝑖̅ + 𝑡𝑗̅ +  𝑡3�̅� ,  

so that         
𝑑𝑟

𝑑𝑡
= 4𝑡𝑖̅ + 𝑗̅ + 3𝑡2�̅�. 

Also on 𝐶, we have 

 𝑓 =   (2𝑡 + 3)𝑖̅ + 2𝑡5𝑗 ̅ + (𝑡4 − 2𝑡2)�̅�. 

Therefore, on 𝐶, 

        𝑓.
𝑑𝑟

𝑑𝑡
= 4𝑡(2𝑡 + 3) +  2𝑡5 + 3𝑡2(𝑡4 − 2𝑡2)

= 3𝑡6 + 2𝑡5 −  6𝑡4 +  8𝑡2 +  12𝑡.  

Since, the curve 𝐶 is from the point (0,0,0) to the point (2, 1, 1) and 𝑦 =  𝑡 

on 𝐶, we note that, on the curve 𝐶,𝑦 = 𝑡 varies from 0 𝑡𝑜 1. Hence,  

∫ 𝑓 . 𝑑𝑟
𝑐

=  ∫ (𝑓 .
𝑑𝑟

𝑑𝑡

1

0

) 𝑑𝑡 =  ∫(

1

0

3𝑡6 + 2𝑡5 −  6𝑡4 +  8𝑡2 +  12𝑡) 𝑑𝑡 =  
288

35
 

 

6. If �̅�  =  (3𝑥2 + 6𝑦)𝒊̅ − 14𝑦𝑧𝒋̅ + 20𝑥𝑧2�̅�,  evaluate ∫ 𝑓 . 𝑑𝑟
𝑐

,  from 

(0,0,0) to the point (1, 1,1) along the curve 𝐶 given by  𝑥 = 𝑡, 𝑦 =

𝑡2 , 𝑧 =  𝑡3.  

Solution: The vector equation of the given curve 𝐶 is    𝑟 =  𝑡𝒊̅ + 𝑡2𝒋̅ + 𝑡3�̅�, so 

that  

𝑑𝑟

𝑑𝑡
= 𝒊̅ + 2𝑡𝒋̅ + 3𝑡2�̅�. 

Also on 𝐶, we have 
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 𝑓 =  9𝑡2𝒊̅ −  14𝑡5𝒋̅ +  20𝑡7�̅�.  

Therefore, on 𝐶, 

𝑓.
𝑑𝑟

𝑑𝑡
=  9𝑡2 −  28𝑡6 +  60𝑡9  

We note that along  the curve 𝐶 is from the point (0,0,0) to the point (1, 1, 1) 

the parameter 𝑡 increases from 0 𝑡𝑜 1. therefore,  

∫ �̅� . 𝑑𝑟
𝑐

=  ∫ (�̅� .
𝑑𝑟

𝑑𝑡

1

0

) 𝑑𝑡 =  ∫(9𝑡2 −  28𝑡6 +  60𝑡9

1

0

) 𝑑𝑡 =  5. 

 

7. Find the total work done by a force 𝒇 = 2𝑥𝑦𝒊̅ − 4𝑧𝒋̅ + 5𝑥�̅� along the 

curve by  𝑥 = 𝑡2 , 𝑦 = 2𝑡 + 1, 𝑧 =  𝑡3  from the point 𝑡 =  1 to the 

point  𝑡 =  2. 

Solution: On the given curve 𝐶, we have    

𝑟 =  𝑡2𝒊̅  + (2𝑡 + 1) 𝒋̅ + 𝑡3�̅�,         

𝑑𝑟

𝑑𝑡
= 2𝑡𝒊̅ + 2𝒋̅ + 3𝑡2�̅�.      and �̅�  =  2𝑡2(2𝑡 + 1)𝒊̅ −  4𝑡3𝒋̅ +  5𝑡2�̅�, 

So that    

�̅�.
𝑑𝑟

𝑑𝑡
=  4𝑡3(2𝑡 + 1) − 8𝑡3 +  15𝑡4 = 23𝑡4 −  4𝑡3 ,                     𝟏 ≤ 𝒕 ≤ 𝟐 

Hence, the required work is  

∫ �̅� . 𝑑𝑟
𝑐

=  ∫ (�̅� .
𝑑𝑟

𝑑𝑡

2

1

) 𝑑𝑡 = ∫(23𝑡4 −  4𝑡3

2

1

) 𝑑𝑡 =  
638

5
. 

 

8. Find the total work done by a force�̅� = (2𝑦 − 𝑥2)𝒊̅ + 𝟔𝑦𝑧𝒋̅ −

8𝑥𝑧2�̅�from the point (0,0,0) to the point(1, 1,1) along the straight line 

joining these points. 

Solution: Here the path (curve) 𝐶 along which the work is done is the straight 

line from the origin (0,0,0) to the point (1,1,1).The Cartesian equations of this 

straight line are 
𝑥

1
=  

𝑦

1
=  

𝑧

1
= 𝑡 (𝑠𝑎𝑦).These equations yield 𝑥 = 𝑡, 𝑦 = 𝑡, 𝑧 =

 𝑡, 0 ≤ 𝑡 ≤ 1 as the parametric equations of the path  𝐶. Thus, here, 

𝑟 =  𝑡 (𝒊̅ + 𝒋̅ + �̅�),               
𝑑𝑟

𝑑𝑡
= 𝒊̅ + 𝒋̅ + �̅�. 
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Hence on 𝐶,   𝒇 = (2𝑡 − 𝑡2)𝒊̅ +  6𝑡2𝒋̅ − 8𝑡3�̅�, 

and    �̅�.
𝑑𝑟

𝑑𝑡
= (2𝑡 − 𝑡2) +  6𝑡2 − 8𝑡3 =  −8𝑡3 +  5𝑡2 + 2𝑡. 

Therefore, the required work is q 

∫ �̅� . 𝑑𝑟
𝑐

=  ∫ (�̅� .
𝑑𝑟

𝑑𝑡

1

0

) 𝑑𝑡 = ∫(−8𝑡3 +  5𝑡2 + 2𝑡

1

0

) 𝑑𝑡 =  
2

3
. 

 

SURFACE INTEGRAL OF A VECTOR FUNCTION 

Any integral which is to be evaluated over a surface is called a surface integral.  

Consider a surface 𝑆 in a three dimensional region. Suppose we setup an 

orthogonal coordinate system (𝑢, 𝑣)𝑜𝑛 𝑆. Let 𝑃(𝑥, 𝑦, 𝑧) be any point on S.  Then 

𝑥, 𝑦, 𝑧 are functions are 𝑢 𝑎𝑛𝑑 𝑣,so that on 𝑆,  

�̅�  =  𝑥(𝑢, 𝑣)𝑖̅  + 𝑦(𝑢, 𝑣)𝑗̅  + 𝑧(𝑢, 𝑣)�̅� =  �̅�(𝑢, 𝑣), 𝑠𝑎𝑦                                        (1) 

This expression for �̅� holds for any 𝑃(𝑥, 𝑦, 𝑧); therefore, this is (taken as) the 

vector equation of S, with u and v as parameters.  As (𝑥, 𝑦, 𝑧)vary over S; the 

parameter pair (𝑢 , 𝑣) varies over region 𝑆̅ in the 𝑢𝑣 − plane. 

 

                                                   Figure 10.5 

 Now consider a vector function 𝑓̅ defined over the region R. Then on S, 

𝑓̅ is a u and v. Let �̂�be the unit normal vector to S. Then it can be proved that �̂� 

is along the vector 
𝜕�̅�

𝜕𝑢
×

𝜕�̅�

𝜕𝑣
. 

Suppose we the double integral of the scalar function 𝑓̅  ∙ (
𝜕�̅�

𝜕𝑢
×

𝜕�̅�

𝜕𝑣
) over 

the plane region 𝑆̅. This double is called the scalar surface integral of 𝑓̅ over S 

and is denoted by ∫ 𝑓 ̅. �̂� ds.
𝑆
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Thus we have by definition  

∫ 𝑓 ̅. �̂� ds
𝑆

=  ∬ �̅� . (
𝜕𝒓

𝜕𝑢
 ×  

𝜕𝒓

𝜕𝑣
)

S̅

𝑑𝑢 𝑑𝑣                                        (2) 

 The term (
𝜕�̅�

𝜕𝑢
×

𝜕�̅�

𝜕𝑣
)  𝑑𝑢𝑑𝑣 present in the integral on the R.H.S of the 

above expression is referred to as the vectorial area element on S and is denoted 

by �̂� dS. Thus by definition  

�̂� ds =  (
𝜕�̅�

𝜕𝑢
×

𝜕�̅�

𝜕𝑣
)  𝑑𝑢𝑑𝑣                                                                    (3) 

 

Remark: Integrals of the form ∫ 𝑓 ̅. �̂� ds
𝑠

 arise in many physical situations. In 

fluid flow problems the integral ∫ 𝑓 ̅. �̂� dS
𝑠

 gives the flux across S(= mass of 

fluid crossing S per unit time) when 𝑓̅ =  𝜌�̅�, where  𝜌 is the density of the fluid  

and �̅� is the velocity vector of the flow for this reason, the integral ∫ 𝑓 ̅. �̂� dS
𝑠

 is 

often referred to as the flux integral of the vector  𝑓̅( across S). 

 

CARTESIAN EXPRESSION 

Suppose the Cartesian equation of S is of the form 𝑧 =  𝑓(𝑥, 𝑦). Then 𝑥 𝑎𝑛𝑑 𝑦 

serve as parameters defining𝑆. Consequently, the region 𝑆̅ on which these 

parameters vary is the projection of S on the 𝑥𝑦 −plane, and expression (3) 

yields 

�̂� ds =  (
𝜕�̅�

𝜕𝑥
×

𝜕�̅�

𝜕𝑦
)  𝑑𝑥𝑑𝑦 = (𝑖̅ +

𝜕𝑧

𝜕𝑥
�̅�) × (𝑗̅ +

𝜕𝑧

𝜕𝑦
�̅�) 𝑑𝑥𝑑𝑦 

= {�̅� − (
𝜕𝑧

𝜕𝑥
𝑖̅ +

𝜕𝑧

𝜕𝑦
𝑗)̅} 𝑑𝑥                                                                       (4) 

 Thus, if the equation of the surface S is of the form 𝑧 =  𝑧(𝑥, 𝑦), we have 

∫ 𝑓̅ . �̂� ds
𝑠

=  ∬ �̅� . {�̅� − (
𝜕𝑧

𝜕𝑥
𝑖̅ +

𝜕𝑧

𝜕𝑦
𝑗)̅}

s̅

𝑑𝑥 𝑑𝑦                            (5) 

From (4), we find�̅� ∙ (�̂� ds) = 𝑑𝑥𝑑𝑦                                                       (6) 

We note that�̅� ∙ (�̂� ds) is the projection of the vectorial area elements 

(�̂� ds) on the 𝑥𝑦 −plane, and (6) shows that this projection is equal to 𝑑𝑥𝑑𝑦, 

which is the area element in the 𝑥𝑦 −plane. 
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Similarly, we can show that the projections of (�̂� ds) on 𝑦𝑧 − and 𝑧𝑥 −

 planes are 𝑑𝑦𝑑𝑧 and 𝑑𝑧𝑑𝑥 respectively. That is, 

𝑖 ∙̅ (�̂� ds) = 𝑑𝑦𝑑𝑧, 𝑗̅ ∙ (�̂� ds) = 𝑑𝑧𝑑𝑥                                                (7)  

In view of (6) and (7), we obtain the following Cartesian expression for the 

vectorial area element. 

(�̂� ds) = (𝑑𝑦𝑑𝑧)𝑖̅ + (𝑑𝑧𝑑𝑥)𝑗̅ + (𝑑𝑥𝑑𝑦)�̅�                                            (8) 

 

9. If 𝑆 denotes that the part of the plane 2𝑥 +  𝑦 +  2𝑧 =  6 which lies in 

the positive octant, and �̅� = 4𝑥𝐢̅ + y𝐣̅ + z�̅�,evalute∫ 𝑓̅ . �̂� ds.
𝑠

 

Solution: The intercepts of the given plane on the positive x-, y- and z-axes are 3, 

6 and 3 respectively. Therefore, in the first octant, we have 0 ≤ 𝑥 ≤ 3, 0 ≤ 𝑦 ≤

6, 0 ≤ 𝑧 ≤ 3.  

With (x, y) as parameters, the parametric equations of 𝑆 are 𝑥 = 𝑥, 𝑦 =

𝑦, 3 − 𝑥 −  
1

2
𝑦. 

Therefore, at a point of 𝑆,  

�̅�  =  𝑥𝑖̅  +  𝑦𝑗̅  + (3 − 𝑥 −  
1

2
𝑦)�̅� 

and 
𝜕𝒓

𝜕𝑥
= 𝒊̅ − �̅�,       

𝜕𝒓

𝜕𝑦
= 𝒋̅ − 

𝟏

𝟐
�̅�,  

so that  
𝜕𝒓

𝜕𝑥
 ×  

𝜕𝒓

𝜕𝑦
= 𝒊̅ + 

𝟏

𝟐
𝒋̅ + �̅�. 

 

Therefore 

�̅� . (
𝜕𝒓

𝜕𝑥
 ×  

𝜕𝒓

𝜕𝑦
) = 4𝑥 + 

1

2
𝑦 + 𝑧 =  4𝑥 + 

1

2
𝑦 + (3 − 𝑥 − 

1

2
𝑦) = 3(𝑥 + 1). 

According to the virtue of expression (2), we have  

∫ 𝑓 ̅. �̂� ds.
𝑠

=  ∬ �̅� . (
𝜕𝒓

𝜕𝑥
 ×  

𝜕𝒓

𝜕𝑦
)

S̅

𝑑𝑥 𝑑𝑦 = ∬ 3(𝑥 + 1)𝑑𝑥 𝑑𝑦
S

 

Hence 𝑆̅ is the projection of 𝑆 on the 𝑥𝑦 – plane; this projection is the 

triangular area having vertices  𝑂 =  (0, 0), 𝐴 =  (3, 0), 𝐵 =  (0, 6). See 

figure .   Thus 
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                                              Figure 10.6 

∫ 𝑓̅ . �̂� ds
𝑠

=  ∫ ∫ 3(x + 1)dy dx
6 −2x 

y = 0 

3

x = 0

= 3 ∫ (x + 1)(6 − 2x)dx 
3

0

= 54. 

 

10. Evaluate ∫ 𝑓 ̅. �̂� ds
𝑠

, where 𝑆 is the part of the surface of the sphere 

𝑥2 +  𝑦2 + 𝑧2 =  𝑎2 in the first octant, and �̅� = 𝑦𝑧 𝒊̅ + 𝑧𝑥𝒋̅ + 𝑥𝑦�̅�. 

Solution: The given surface 𝑆 has the Cartesian equation 

𝑧2 =  𝑎2 − 𝑥2 − 𝑦2 𝑥 > 0, 𝑦 > 0, 𝑧 > 0 

 (𝑖) 

 From this, we find 2𝑧
𝜕𝑧

𝜕𝑥
=  −2𝑥,  so that     

𝜕𝑧

𝜕𝑥
=  − 

𝑥

𝑧
=  − 

𝑥

√𝑎2−𝑥2−𝑦2
 

Similarly, 
𝜕𝑧

𝜕𝑦
=  − 

𝑥

𝑧
=  − 

𝑦

√𝑎2−𝑥2−𝑦2
 

Therefore, if 𝑆̅ is the projection of 𝑆 on the 𝑥𝑦 – plane, we have  

∫ 𝑓̅ . �̂� ds
𝑠

=  ∬ �̅� . {�̅� − (
𝜕𝒛

𝜕𝑥
𝒊̅ +  

𝜕𝑧

𝜕𝑦
𝒋)̅}

S̅

𝑑𝑥 𝑑𝑦 

= ∬ �̅� . {�̅� + (
𝒙𝒊̅ + 𝒚𝒋̅

√𝑎2 − 𝑥2 − 𝑦2
)}

S̅

𝑑𝑥 𝑑𝑦 

On 𝑆, the given vector is  

 𝒇 = 𝑦𝑧𝒊̅ + 𝑧𝑥𝒋̅ + 𝑥𝑦�̅� = ∬ {(√𝑎2 − 𝑥2 − 𝑦2) (
𝑦𝑥+𝑥𝑦

√𝑎2−𝑥2−𝑦2
)} 𝑑𝑥 𝑑𝑦

�̅�
 

              = ∬ (3𝑥𝑦)𝑑𝑥 𝑑𝑦
�̅�

 

Since 𝑆 is the part of spherical surface 𝑥2 + 𝑦2 +  𝑧2 =  𝑎2 in the first octant, its 

projection 𝑆̅ on the 𝑥𝑦 -plane is the area bounded by the circle 𝑥2 + 𝑦2 =  𝑎2 in 
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the first quadrant. As such, changing to polar coordinates, expression (iii) 

becomes  

∫ 𝑓 ̅. �̂� ds
𝑠

= ∫ ∫ 3((rcosθ)(rsinθ)(rdrdθ)
π 2⁄

 θ= 0 

a

r = 0

 

= 3 ∫ 𝑟3𝑑𝑟 × ∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
π 2⁄

0

𝑎

0

= 3 ∙
𝑎4

4
∙

1

2
=  

3

8
𝑎4. 

Thus, the given surface integral is evaluated.  

 

 

VOLUME INTEGRAL OF A VECTOR FUNCTION 

Any integral which is to be evaluated over a volume is called a volume integral.  

Consider a vector field 𝑓̅ defined over region of volume 𝑉 in three dimensional 

space.  If 𝑓̅ = 𝑓1𝑖̅ + 𝑓2𝑗 ̅ +  𝑓3�̅�, then 𝑓1, 𝑓2, 𝑓3 are scalar functions of 𝑥, 𝑦, 𝑧  over 

region. The vector whose 𝑥−, 𝑦−, 𝑧 − components of the volume integrals of 

𝑓1, 𝑓2, 𝑓3respectively over  𝑉 is called the vector volume integral of 𝑓̅ over 𝑉; it is 

denoted by ∫ 𝑓̅𝑑𝑉.
𝑉

 

Thus, we have by definition  

∫ 𝑓�̅�𝑉
𝑉

= ∫(𝑓1𝑖̅ + 𝑓2𝑗 ̅ + 𝑓3�̅�) 𝑑𝑉 =  𝑖̅ ∫ 𝑓1𝑑𝑉 + 𝑗̅∫ 𝑓2𝑑𝑉 +
𝑉

�̅� ∫ 𝑓3𝑑𝑉
𝑉𝑉𝑉

 

 

11. If 𝑓̅  = 2𝑥𝑧𝑖̅ − 𝑥𝑗̅ +  𝑦2�̅�, evaluate ∫ 𝑓�̅�𝑉,
𝑉

 where V is the volume of 

the region bounded by the surfaces 𝑥 =  0, 𝑥 =  2, 𝑦 =  0, 𝑦 =  6, 𝑧 =

 𝑥2 , 𝑧 = 4. 

Solution: Here 𝑓1 = 2𝑥𝑧, 𝑓2 = −𝑥, 𝑓3 = 𝑦2.  Therefore, 

∫ 𝑓̅
𝑉

𝑑𝑉 =  {∫ 𝑓1𝑑𝑉
𝑉

} 𝑖 +  {∫ 𝑓2𝑑𝑉
𝑉

} 𝑗 + {∫ 𝑓3𝑑𝑉
𝑉

} 𝑘 

=  {2 ∫ 𝑥𝑧𝑑𝑉
𝑉

} 𝑖̅ −  {∫ 𝑥𝑑𝑉
𝑉

} 𝑗̅ + {∫ 𝑦2𝑑𝑉
𝑉

} �̅�                (𝐼) 

Now ∫ 𝑥𝑧
𝑉

𝑑𝑉 =  ∫ ∫ ∫ 𝑥𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥

4

𝑧=𝑥2

6

𝑦=0

2

𝑥=0

=  ∫ ∫ 𝑥 (
16

2
−

𝑥4

2
)

6

0

2

0

𝑑𝑦 𝑑𝑥 

= 3 ∫ 𝑥(16 − 𝑥4)

2

0

 𝑑𝑥 = 64                                                      (𝐼𝐼) 
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∫ 𝑥
𝑉

𝑑𝑉 =  ∫ ∫ ∫ 𝑥 𝑑𝑧 𝑑𝑦 𝑑𝑥

4

𝑧=𝑥2

6

𝑦=0

2

𝑥=0

=  ∫ ∫ 𝑥(4 − 𝑥2)

6

0

1

0

𝑑𝑦 𝑑𝑥 

    = 6 ∫ 𝑥(4 − 𝑥2)

2

0

 𝑑𝑥 = 24                                             (𝐼𝐼𝐼) 

∫ 𝑦2

𝑉

𝑑𝑉 =  ∫ ∫ ∫ 𝑦2 𝑑𝑧 𝑑𝑦 𝑑𝑥

4

𝑧=𝑥2

6

𝑦=0

2

𝑥=0

=  ∫ ∫ 𝑦2(4 − 𝑥2)

6

0

2

0

𝑑𝑦 𝑑𝑥 

                                         = 72 ∫(4 − 𝑥2)

2

0

 𝑑𝑥 = 384.                            (𝐼𝑉) 

Putting (II), (III), and (IV) into (I), we get  

∫ 𝑓̅
𝑉

𝑑𝑉 = 128𝑖̅ − 24𝑗̅ + 384 𝑘. 

 

12. If �̅�  = (2𝑥2 −  3𝑧)𝒊̅ − 2𝑥𝑦𝒋̅ −

4�̅�,evaluate∫ 𝑑𝑖𝑣�̅�𝑑𝑉 𝑎𝑛𝑑 ∫ 𝑐𝑢𝑟𝑙�̅�𝑑𝑉 
𝑉𝑉

 where V is the volume of the 

region bounded by the surfaces x=0, y=0, z=0 and 2x+2y+z=4. 

Solution: For the given 𝒇,̅we find that 𝑑𝑖𝑣 �̅� = 2x.  Therefore,  

∫ 𝑑𝑖𝑣�̅�𝑑𝑉 =

𝑉

∫ 2𝑥 𝑑𝑉  

𝑉

 

= 2 ∫ ∫ ∫ 𝑥 𝑑𝑧 𝑑𝑦 𝑑𝑥

4−2𝑥−2𝑦

𝑧=0

2−𝑥

𝑦=0

2

𝑥=0

=  ∫ ∫ 𝑥(4 − 2𝑥 − 2𝑦)

2−𝑥

0

2

0

𝑑𝑦 𝑑𝑥 

= 2 ∫{𝑥(4 − 2𝑥)(2 − 𝑥) − 𝑥(2 − 𝑥)2}𝑑𝑥

2

0

= 2 ∫(𝑥3 − 4𝑥2 + 4𝑥) 𝑑𝑥 =
8

3

2

0

                                (𝑖) 

Next, we find that, for the given f, we have curl �̅�  =  𝒋̅ − 2𝑦�̅�.Therefore, 

∫ 𝑐𝑢𝑟𝑙 �̅� 𝑑𝑉 = 

𝑉

{∫ 1 𝑑𝑉

𝑉

} 𝒋̅ − 𝟐 {∫ 𝑦 𝑑𝑉

𝑉

} �̅�                                          (𝒊𝒊)       
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Now ∫ 𝑑𝑉

𝑉

= ∫ ∫ ∫  𝑑𝑧 𝑑𝑦 𝑑𝑥

4−2𝑥−2𝑦

0

2−𝑥

0

2

0

=  ∫ ∫ (4 − 2𝑥 − 2𝑦)

2−𝑥

0

2

0

𝑑𝑦 𝑑𝑥 

                           = ∫{(4 − 2𝑥)(2 − 𝑥) − (2 − 𝑥)2}𝑑𝑥

2

0

= ∫(𝑥2 − 4𝑥 + 4) 𝑑𝑥 =
8

3

2

0

                                                     (𝑖𝑖𝑖) 

∫ 𝑦 𝑑𝑉

𝑉

= ∫ ∫ ∫ 𝑦  𝑑𝑧 𝑑𝑦 𝑑𝑥

4−2𝑥−2𝑦

0

2−𝑥

0

2

0

=  ∫ ∫ 𝑦(4 − 2𝑥 − 2𝑦)

2−𝑥

0

2

0

𝑑𝑦 𝑑𝑥 

                             =
1

3
∫(2 − 𝑥)3𝑑𝑥 =  

4

3

2

0

                                                              (𝑖𝑣) 

 

 

Putting (iii) and  (iv) into (i), we get  

∫ 𝑐𝑢𝑟𝑙 �̅� 𝑑𝑉 = 

𝑉

8

3
(𝒋 − 𝒌). 
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GREEN’S THEOREM IN THE PLANE 

Let 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) be two functions defined in a region R in the xy-plane 

with a simple closed curve C as its boundary. 

 Then dydx
y

P

x

Q
dyQdxP

RC


















   

 

EXAMPLES 

1. (a) If C is a simple closed curve in the xy-plane, prove by using Green’s 

theorem that the integral  dxydyx
C

 2

1
 represents the area A 

enclosed by C. 

 (b) Hence find the areas enclosed by the following curves: 

(i) The ellipse : 1
2

2

2

2


b

y

a

x
    (ii) The asteroid : 3

2

3

2

3

2

ayx   

Solution: 

(a) According to Green’s theorem 

  dydx
y

P

x

Q
dyQdxP

RC


















   

 Take P = - y and Q = x in this result, we get  

     
ARC

Adydxdydxdyxdxy 222  

 or  dxydyxA
C

  2

1
  This proves the required result. 

(b) (i) The parametric equations of the given ellipse are 

 20,sin,cos  byax  

The area bounded by this curve is 

  abdabdxydyxA
C




 
2

0
2

1

2

1
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(ii) The parametric equations of the given asteroid are 

 20,sin,cos 33  ayax  

Hence, the area enclosed by this curve is  

    


dadxydyxA
C

2424

2

0

2 cossinsincos
2

3

2

1
 

 

  





dada 22
1

0

22222

2

0

2 sincos6sincossincos
2

3
 

 

22

8

3

22

1

4

1
6 aa 




 

 

2.  By using Green’s theorem, evaluate     dyyxdxyx
C

3243   

where C is the circle. 422  yx  . 

Solution: If A is the area enclosed by the given circle, we have, by Green’s 

theorem 

         dydxyx
y

yx
x

dyyxdxyx
RC



















  43323243

 

   84222   Adydx
R

 

 

3.  By using Green’s theorem, evaluate     dyyxdxxyx
C

222   

where C is the squire formed by the lines  11  yx  . 

Solution: Here the region bounded by C is the square region in which both x and 

y increase from -1 to +1, therefore by taking 
222 yxandQxyxP  in 

the Green’s theorem, we get 
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    dyyxdxxyx
C

222 

    dydxxyx
y

yx
x

R



















 

222
 

0

1

1

1

1

 


dydxxdydxx
R

 

 

Figure 10.7 

 

4.   By using Green’s theorem, evaluate     dyxdxxy
C

cossin   

where C is the triangle in the xy-plane bounded by the lines  



 x
yandxy

2

2
0   . 

Solution: By using Green’s theorem, we get  

         dydxxy
y

x
x

dyxdxxy
RC



















  sincoscossin

 

    







 








2

4
sin1sin1

2

0

2

0

x

yxR

dxdyxdydxx
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 Figure 10.8 

 

5. By using Green’s theorem evaluate     dyyxdxyx
C

22222   

where C is the boundary of the region in the xy-plane enclosed by the x 

axis and the upper half of the circle 
222 ayx   . 

Solution: By using Green’s theorem, we get  

         dydxyx
y

yx
x

dyyxdxyx
RC



















 

22222222 22

 

    
R

dydxyx2    (1) 

Where R is the region shown in figure above, in this region r various 

from 0 to a and various from 0 to , where (r, ) are the plane polar coordinates.   

 Also ddrrdydx  . 

      3

00
3

2
sincos addrrrdydxyx

a

rR

 







. 

 Putting this into equation (1), we get 

     32222

3

4
2 adyyxdxyx

C
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                                                              Figure 10.9 

 

6.   Using the Green’s theorem, find the area enclosed between the parabolas  

ayxandaxy 44 22   

Solution: The region between the given the parabolas is shown in figure below. 

 

                                                         Figure 10.10 

Let us denote the parabola 1

2 4 Cbyayx   and the parabola

2

2 4 Cbyaxy   .  Then the boundary C of the region is made up of 

21 CandC  . 

On 1C x increases from 0 to 4a,  and 







 dx

a

x
dythatso

a

x
y

24

2

 

On 2C y increases from 4a to 0,  and 







 dy

a

y
dxthatso

a

y
x

24

2

 

Now, by virtue of the green’s theorem, we find that the required area is 

given by  
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     dxydyxdxydyxdxydyxA
CCC

 
21

2

1

2

1

 


















  dy

a

y
ydy

a

y
dx

a

x
dx

a

x
x

a

a

24422

1 20

4

24

0

 
































 

aaaa
yx

a
dyydxx

a

4

0

34

0

4

0

22

4

0
33

3

8

1

8

1
 

 
    3

33

3

16

3

4

3

4

8

1
a

aa

a









  

 

7.  Using Green theorem, evaluate   
C

dxyxdyxy 22
 where C is the 

cardioids,  cos1 ar  . 

Solution:  

By using Green’s theorem we find   

        dydxyx
y

xy
x

dyxydxyxdxyxdyxy
ACC

 

















 222222

  dydxxy
A

  22
 where A is the area bounded by the given cardioids  

 
A

ddrrr 2
 on changing over to polar coordinates. 

   











d
r

ddrr

aa

r 

































cos1

0

42

0

3

cos1

0

2

0
4

 

  


















dad
a

d
a


























 


2

sin4
2

sin2
4

cos1
4

8

2

0

4

4

2

2

0

4
4

2

0

4

 

2
sin16 8

2

0

4 





 


twheredtta  
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44

16

35

22.4.6.8

1.3.5.7
16 aa 


  

 

Figure 10.11 

 

8. Verify Green’s theorem for      
C

dyxyydxyx 6483 22
 

where C is the boundary of the region enclosed by the line x = 0, y =0, 

and x+y = 1 

Solution:The given region is shown in figure below 

 We note that the boundary curve C is made up of three parts: 

(i) The line OP on which y = 0 and x increases from 0 to 1 

(ii) The line PQ on which y = 1-x, and x varies from 1 to 0 and 

(iii) The line QO on which x = 0 and y varies from 1 to 0 

Therefore taking ,6483 22 xyyQandyxP   we find the given 

integral is  

        
QOPQOPC

QdyPdxQdyPdxQdyPdxQdyPdx  

         
3

5
416141833

0

1

0

1

22

1

0

2    dyydxxxxdxxxdxx

 (1) 

on evaluating the integrals. 

On the other hand, we find that 

dx
y

dxdyydydxydydx
y

P

x

Q
x

x

x

yxAA





































1

0

21

0

1

0

1

0
2

101010  
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3

5
15

2
1

0

 


dxx
x

    

  (2) 

Expression (1) and (2) show that  

   


















AC

dydx
y

P

x

Q
QdyPdx  

Thus, the Green’s theorem is verified for the given integral. 

 

 

Figure 10.12 

  

9. Verify Green’s theorem for    
C

dyxdxyxy 22
 where C is the 

closed curve made up of the line y = x and the parabola, y = x2. 

 

Solution: The two parts C1 and C2 of the given curve C and the region bounded 

by the C are shown in figure below. 

We note that along C1:   y = x2  and x varies from 0 to 1 and  

  along C2: y = x and x varies from 1 to 0. 

Therefore taking ,22 xQandyxyP   we find that given integral is  

      

21 CCC

QdyPdxQdyPdxQdyPdx  
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          22222

1

01

xdxdxxxxQdyPdx
C

   , because y = x2 

on C1 

       
20

19
32 43

1

0

243

1

0

  dxxxdxxxdxxx  (1) 

And 

       dxxdxxxQdyPdx
C

222

0

12

   , because y = x on C2 

  13 2

0

1

  dxx       (2) 

Adding (1) and (2) we get the integral as  

 
20

1

20

1

20

19 


C

QdyPdx
    (3)

 

We find that  

    dxdyyxdydxyxdydx
y

P

x

Q
x

xyxAA

22
2

1

0





















 

   
20

132

1

0


 



dxxx
x

   (4) 

From (3) and (4), we note that  

    


















AC

dydx
y

P

x

Q
QdyPdx  

Thus, the Green’s theorem is verified for the given integral. 
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Figure 10.13 

 

10. Verify Green’s theorem for     
 

C

xx dyyedxye cossin  where C is 

the rectangle whose vertices are (0, 0), (, 0), (, /2), (0, /2) .  

Solution: Here the given rectangular boundary C is made up of the four lines 

OA, AB, BC, CO shown in figure below. 

Therefore taking ,cossin yeQandyeP xx    we find that given integral 

is            
COBCABOAC

QdyPdxQdyPdxQdyPdxQdyPdxQdyPdx  

Along OA: y =0, dy = 0, x varies from 0 to  

Along AB: x =, dx = 0, y varies from 0 to /2 

Along BC: y =/2, dy = 0, x varies from  to 0 

Along CO: x =0, dx = 0, y varies from /2 to 0 

  0
OA

QdyPdx       (1) 

  
 

2

0

cos



 edyyeQdyPdx
AB

   (2) 

    

0

1


edxeQdyPdx x

BC

    (3) 

   

0

2

1cos


dyyQdyPdx
CO

    (4) 
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Adding equations (1), (2), (3) and (4)we get the given integral 

       12110  


 eeeQdyPdx

C

 (5) 

We find that  

    dxdyyedydxyedydx
y

P

x

Q x

yxR

x

R

cos2cos2
2

00







 





















 

  12  e      (6) 

From (5) and (6), we note that  

    


















RC

dydx
y

P

x

Q
QdyPdx  

Thus, the Green’s theorem is verified for the given integral. 

 

 Figure 10.14 
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STOKE’S THEOREM 

If ‘S’ be an open surface bounded by a closed curve C and 

kFjFiFF 321  be vector point function having continuous first order 

partial derivatives, then dsnFcurlrdF
SC

   where n  is a unit normal 

vector at any point of S drawn in the sense in which a right in the sense of 

description of C. 

 

EXAMPLES 

1. Using Stoke’s theorem, evaluate dsnfcurl
S

   for

    kxzjyzizyf  42  where S is the cubical surface 

formed by the planes x=0, y=0, x =2, y = 2 and z= 2. 

Solution: The rim C of the given surface is the square OPQR in the xy-plane, 

where O(0, 0), P(2, 0), Q(2, 2), R(0, 2) we note that z=0 on the whole of C,  x = 

constant on PQ and RO, and y=constant on OP and QR. 

 By using Stoke’s theorem, we get 

rdfdsnfcurl
CS

   

dyfdxfdyfdxf
ROQRPQOP

  2121  

       dyyzdxzydyyzdxzy
ROQRPQOP

  4242  

44442

0

2

0

2

2

0

2

0

  dydxdydx
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2. Evaluate  
C

drf by Stoke’s theorem, where  kzxjxiyf  22
 

and C is the boundary of the triangle with vertices at (0,0, 0), (1, 0, 0) 

and (1, 1, 0). 

Solution: Since z- coordinates of each vertex of the triangle is zero, therefore, 

the triangle lies in the xy-plane and kn   

 kyxjfcurl  2  

    yxkkyxjnfcurl  22  

The equation of the line OB is y=x 

  By using Stoke’s theorem, we get 

dsnfcurlrdf
SC

   

  dx
y

xydxdyyx

x

x

x

yx 0

21

00

1

0
2

22 







 



 

3

1

32
2

1

0

3
2

1

0

2
2

1

0


















 



x
dxxdx

x
x

xx

 

 

3. Using Stoke’s theorem, evaluate        
C

dzzydyzxdxyx 2  

where C is the  boundary of the triangle with vertices at P(1, 0, 0), Q(0, 

2, 0) and R(0, 0, 3). 

Solution: We have  

              
CC

kzyjzxiyxdzzydyzxdxyx rd 2  2

 

 
SC

dsnfcurlrd f  by Stoke’s theorem. 

 Where        kzyjzxiyxf  2  and S is any surface 

having C as its rim.   
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 We may take the plane bounded by the given triangle PQR itself as S.  

The equation of this plane is  1
321


zyx
 , so that the direction ratios of its 

normal are (1, ½, 1/3). 

Therefore  kji

kji

n 236
7

1

9

1

4

1
1

3

1

2

1
























  

Hence ki

zyzxyx

zyx

kji

fCurl 














 2

2

 

Therefore       2212
7

1
236

7

1
2  kjikinfcurl  

Hence Adsdsnfcurl
SS

22   where A is the area of the triangle PQR. 

We note that the area of the triangle PQR, 
2

7

2

1
 PRPQA  

Therefore        7
2

7
22 










C

dzzydyzxdxyx  

 

4. Verify Stoke’s theorem for kxjziyf    for the upper part of the 

sphere 
2222 azyx   

Solution: The rim C of the given surface is the circle
222 ayx   in the xy-

plane.  Therefore the parametric equation C are 

20;0,sin,cos  tztaytax  

Hence,  
CC

dxyrd f  because z = 0 on C. 
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   2
2

0

22

2

0

sin4cossin adttadttata 





    (1) 

The given surface, S for which C is the rim is the upper part of the sphere 
2222 azyx   

Therefore on S, 02222  zyxaz     (2) 

From this we find, x
x

z





2 , so that 

222 yxa

x

z

x

x

z












 

Similarly, 
222 yxa

y

z

y

y

z












,  



































SS

dydx
yxa

jyix
kfcurldsnfcurl

222
  (3) 

Here S  is the projection of s on the xy-plane which is the area bounded 

by the circle 
222 ayx  . 

For the given f,  we find that 

   kji

xzy

zyx

kji

fcurl 











  

Using this in the r.h.s of (3), we get 

   

































SS

dydx
yxa

yx
dsnfcurl

222
1   (4) 

Changing to polar coordinates (r, ) and noting that, in the circular area rS ,  

varies from 0 to a and  varies from 0 to 2, expression (4) reads   

 
 








ddrr
ra

r
dsnfcurl

a

rS

















 


22

2

00

sincos
1   
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ddr
ra

r
ddrr

aa

r

sincos

2

0
22

2

0

2

00

  

2
2

0
2

2 a
a

 







       (5) 

From (1) and (5), we note that dsnfcurl
SC

  rd f  

Thus, stokes’ theorem is verified in the given case. 

 

Figure 10.15 

 

5. Verify Stokes theorem for the vector field 

     kzyjyziyxf 222   over the upper half surface of 

1222  zyx   bounded by its projection on the xy-plane. 

Solution: Let S be the upper half surface of 1222  zyx  .  The boundary 

C of S is a circle in the xy-plane of radius unity and centre O (or origin). 

 

                                                                  Figure 10.16 
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 The equation of C are 0,122  zyx  . 

Therefore the parametric equations of C are 

20;0,sin,cos  tztaytx  

Hence,    
CC

dzzydyyzdxyx 222rd f  because z = 0 on C. 

 

       

 2

0

2

2

0

2

0

sincossin2sinsincos2sincos2 dttttdttttdt
dt

dx
tt

  

  




























 

2

0

2

0

2sin
2

1

2

1
2cos

2

1
2cos1

2

1
2sin tttdttt      (1) 

Also      kfCurl   

nknfCurl   

  




S RS kn
kndskndsnfcurl

dydx
    where 

R is the projection of x on xy-plane. 

dxxdxxdxdydydx

x

xyxR

2

1

0

2

1

1

1

1

1

1

1412

2

2

 






   





















 

22

1
4sin

2

1
1

2
4

1

0

12 xdxx
x

 

  (2) 

From (1) and (2) we get 

dsnfcurl
SC

  rd f  

Therefore Stokes theorem verified. 
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6. If C is the circle of intersection of the sphere  
2222 azyx    and 

the plane x+z=a, prove that 
2

2
2 axdzdydxy

C


  

Solution: We note that 

  
CC

rdkxjziyxdzdydxy 2   =     
S

dsnfcurl  

where kxjziyf        (1) 

by stokes theorem.  Here S is any, surface for which C is the rim.  We can take 

the portion of the plane x+z=a bounded by C itself as S. for this plane, the 

direction ratios of the normal are (1, 0, 1).  Therefore,  

 kin 
2

1
      (2) 

Also,   kjifcurl        (3) 

Putting (2) and (3) into (1), we get 

    Adsdskikjirdf
SSC

22
2

1
,    (4) 

Where A is the area of the plane x+z=a bounded by C. 

 Since C is the circle of inter section of the sphere 
2222 azyx  and 

the plane x+z=a the radius of C is 
22 paR   , where p is the length of the 

perpendicular from the centre of the sphere onto the plane.  Since the origin is the 

centre of the sphere, we note that
2

a
p   .   

(The length of the perpendicular from the origin onto the plane ax+by+cz+d = 0 

is 
2a

d


 ) 
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22

2

1

2
2 aa

aR 







   consequently, the area bounded by C is  

22

22

2 aa
RA


 








   .  Putting this into (4), we get  

22
2

22 aa
rdf

C

 
   .   

 

DIVERGENCE THEOREM 

Let ‘S’ be the enclosed boundary surface of a region of volume V.  Then, for a 

vector field f defined in V and on S, dVfdivdsnf
VS

  .  (1) 

 Here n  is the unit outward normal to S.  

Note:  If we take kfjfiff 321  and use expression 

     kdydxjdxdzidzdydsn  , we get 

dxdyfdxdzfdzdyfdsnf 321  then equation (1) stated above as 

follows:  

  dzdydx
z

f

y

f

x

f
dydxfdxdzfdzdyf

VS

 





















 321

321  (2) 

 This is the Cartesian form of the divergence theorem.   

Remark: Whereas Stoke’s theorem converts a surface integral taken on an open 

surface into the line integral over its boundary curve (rim), the divergence 

theorem converts a surface integral on a closed surface into the volume integral 

over the region enclosed by the surface. 

 

EXAMPLES 

1. For any closed surface S, prove that 0 dsnfcurl
S

.   

Solution: By the divergence theorem, we have 
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    0sin0   fcurldivcedvfcurldivdsnfcurl
VS

 

Where V is the volume enclosed by S. 

 

2. Evaluate  dsnrcurl
S

   where S is a closed surface.  

Solution: By the divergence theorem, we have 

 dvrdivdsnrcurl
VS

  , where V is the volume enclosed by S. 

   333   rdivVdv
V  

3. Use divergence theorem to show that vsdr
S

62  , where S is any 

closed surface enclosing a volume V. 

Solution: By the divergence theorem, we have 

   dvrdivsdr
VS

  2
 

VdVdVr
zyx

VV

662
222























   

where V is the volume enclosed by S. 

4. Evaluate dsnf
S

  , where       kzyjyxzizxf 232 2   

where S is the surface of the sphere having centre at (3, -1, 2) and radius 

3.  

Solution: Let      kzyjyxzizxf 232 2   , we have 3fdiv

  

Let V be the volume enclosed by the surface S.  Then by the divergence theorem, 

we have 
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  VdVdvfdivdsnf
VVS

33    

But V is the volume of a sphere of a radius 3. 

   363
3

4 3
  

Hence   108363  dsnf
S  

 

5. Evaluate dsnf
S

  , where  kzjyixf   and S is the surface of 

the sphere 
2222 azyx  .  

Solution: Let kzjyixf   we have  3fdiv  

Let V be the volume enclosed by the surface S.  Then by the divergence theorem, 

we have   VdVdvfdivdsnf
VVS

33    

But V is the volume of a given sphere     33

3

4

3

4
aa    

Hence  
33 4

3

4
3 aadsnf

S

   

 

6. If S is a closed circuit enclosing a volume V and kczjbyiaxf  , 

where a, b, c are constants.  Prove that  Vcbadsnf
S

     .  

Solution: Let kczjbyiaxf    we have  cbafdiv   

Let V be the volume enclosed by the surface S.  Then by the divergence theorem, 

we have 

     VcbadVcbadvfdivdsnf
VVS
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7. Using the divergence theorem, evaluate dsnf
S

  , where  

kyzjyixzf  24  and S is the surface of the cube bounded by 

1,0,1,0,1,0  zzyyxx .  

Solution: Let kyzjyixzf  24  we have  yzfdiv  4 . 

Now, the divergence theorem yields  

    
VVS

dVyzdvfdivdsnf 4  

Where V is the volume of a given cube 

Hence   




1

0

1

0

1

0

4
zyxS

dxdydzyzdsnf  

    dxdyydxdyyzz
yxyx 
























 



1

0

1

0

1

0

1

0

2

1

0

1

0

22  

2

3

2

3

2

1
2

2
2

1

0

1

0

1

0

21

0


















































 



dxdxdx
y

y
xxx

 

 

8. If S is the sphere 
2222 azyx  , prove that  

  5333

5

12
adydxzdxdzydydzx

S

  

Solution: We recall that kfjfiff 321   

  
SS

dydxfdxdzfdzdyfdsnf 321   (1) 

According we can write  

  
SS

dydxzdxdzydzdyxdsnf 333
  (2) 
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By taking 
3

3

3

2

3

1 ,, zfyfxf  or equivalently 

kzjyixf 333  (3) 

Now if V is the volume of the given sphere, the divergence theorem 

yields  

  
VVS

dVzyxdvfdivdsnf 2223   (4) 

 Over the given sphere we have 10  ar , 

 200  and  

Where (r,  , ) are spherical polar coordinates.  Also  dddrrdV sin2  

Equation (4) becomes  

  522

2

000
5

12
sin3 adddrrrdsnf

s

rS










 


 using this in 

expression (2) we get the required results. 

 

9. If S is the sphere 
2222 kzyx  , prove that  

    4222

3

4
kcbadsczbyax

S




 

Solution: Here the given surface S is     0,, 2222  kzyxzyx , so 

that the unit outward normal to this surface is 

 
k

kzjyix

zyx

kzjyix
n














2222

2




 (1) 

Here we consider vector   kfjfiff 321     then we have  

 321

1
fzfyfx

k
nf     

According we can write  

 dsczbyaxdsnf
SS

  222
    (2) 
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By taking kczfkbyfkaxf  321 ,, or equivalently 

 kczjbyiaxkf        (3) 

Thus, with f  given by equation (3), we find that,  cbakfdiv   

Now the divergence theorem yields  

   VcbakdVcbakdvfdivdsnf
VVS

 

   

    43

3

4

3

4
kcbakcbak 


   

 (Since volume of the sphere, 
3

3

4
kV  ) 

10.  Evaluate    dskxyjzxiyz
S

  where S is the surface of the sphere, 

prove that 
2222 azyx   in the first octant. 

Solution: The surface of the region OABC is piece wise smooth and is 

comprised of four surfaces 

(i) S1 – circular quadrant OBC in the yz-plane 

(ii) S2 – circular quadrant OCA in the zx-plane 

(iii) S3 – circular quadrant OAB in the xy-plane 

(iv) S – surface ABC of the sphere in the first octant. 

 

                                      Figure 10.17 

Also in the yz-plane  kxyjzxiyzf   by divergence theorem 
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 sdfsdfsdfsdfdvfdiv
SSSSV

 
321

  (1) 

Now       0













 xy

z
zx

y
yz

x
fdiv  for the surface S1, x = 0 

    idzdyiyzsdf

yaa

S

 
 22

1 00

 
8

4

00

22

a
dzdyyz

yaa


 


 

Similarly  
8

4

2

a
sdf

S


  

8

4

3

a
sdf

S


  

Thus equation (1) becomes sdf
a

s




 8

3
0

4

 

Hence 
8

3 4a
sdf

s

  

 

11. Verify the divergence theorem for  

     kxyzjzxyiyzxf  222
 over the rectangular 

parallelepiped 0  x  a, 0yb, 0zc. 

Solution: For the given       kxyzjzxyiyzxf  222
 , we have  

  zyxfdiv  2 . 

 If V is the volume of the given parallelepiped, we have   

   

 cbaabc

dxdydzzyxdvzyxdvfdiv

c

z

b

y

a

xVV



 
 000

22
(1) 

Next, we note that the boundary surface S of the given parallelepiped is made up 

of the following six faces: 

 S1 : OABC,  S2: OPQA,   S3: OCSP,  S4: PQRS , S5: CSRB, S6: ABRQ 

The unit outward normals to these faces are: iandjkijk ,,,,   

respectively. 
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4

22

001

ba
dxdyxydydxxydskfdsnf

b

y

a

xOABCOABCS

 


(2) 

Similarly we find that 

4

22

2

ac
dsnf

S

       (3) 

4

22

3

cb
dsnf

S

       (4) 

Next,   

      dxdyxycdydxxycdskfdsnf

b

y

a

xPQRSPQRSS

 


2

00

2

4

 

4

22
2 ba

abc      (5) 

Similarly find that 

4

22
2

5

ac
cabdsnf

S

      (6) 

4

22
2

6

cb
bcadsnf

S

      (7) 

Adding expression (2) to (7), we get 

 cbaabcbcacababcdsnf
S


222

  (8) 

From equations (1) and (8) we obtain 

 
SV

dsnfdvfdiv  

Thus for the given f   and for the given region, the divergence theorem is 

verified. 
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Figure 10.18 

 

12. Verify divergence theorem for kzjyixf 2224   taken over the 

region bounded by the cylinder 3,0,422  zzyx .. 

Solution: For the given zyfdiv 244  . 

    dxdydzzydzdydxzydvfdiv
z

x

xyxVVV

244244

3

0

4

4

2

2

2

2

 






 

2

0

122

2

2

4

4

2

2
2

sin
2

4
4

2
8444221

2

2









 








x

x
x

dxxdxdy
x

x

xyx

 

  


84
2

2841sin84 1 







 

    (1) 
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                                      Figure 10.19 

To evaluate the surface integral, divide the closed surface S of the cylinder into 3 

parts. 

S1:  The circular base in the plane z=0 

 S2:  The circular top in the plane z=3 

S3:  The curved surface of the cylinder given by the equation x2 + y2 = 4 

Also 

dsnfdsnfdsnfdsnf
SSSS

 
321

  

On S1 (z=0), we have  jyixfkn 224,     

So that     024 2  kjyixnf  

0

1

 dsnf
S

     (2) 

On S2 (z=3), we have  kjyixfkn 924, 2   

  

So that     9924 2  kkjyixnf  

dydxdydxdsnf
SSS

 

222

99    

  = 9  area of surface    3629 2

2 S   (3) 

On S3,  422  yx  

A vector normal to the surface S3 is given by  

  jyixyx 2222   

 n  = a unit vector normal to the surface S3 

 

 
 4

2

1

22

44

22 22

22










 yx

jyix

jyix

yx

jyix
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  3222 2
2

24 yx
jyix

kzjyixnf 











 
   

Also, on S3     i.e., 422  yx  ,  x = 2cos, y = 2sin and ds = dx dy = 2d dz 

To cover the whole surface S3, z varies from 0 to 3 and  varies from 0 to 2 

 

     




ddzdsnf
zS

2sin2cos22
32

3

0

2

03

 


  

      








dzddz z

z

3

0

32

2

0

32

3

0

2

0

sincos16sincos16 



 

 

  







 
















ddd

2

0

3

2

0

232

2

0

sincos48sincos48

  









48
22

1
4480cos448 2

2/

0









 



d   (4) 

Adding expression (2), (3) and (4), we get 

 8448360  dsnf
S

    (5) 

From equations (1) and (5) we obtain 

 
SV

dsnfdvfdiv  

Thus for the given f   and for the given region, the divergence theorem is 

verified. 
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